The influence of carbon atoms on the magnetic moment in the Fe-C system: calculation from the first principles
Mirzoev A. A.1, Ridny Ya. M.1, Duryagina N. S.1, Verhovyh A. V.1
1South Ural State University (National Research University), Chelyabinsk, Russia

From the first principles, the influence of carbon content on the magnetic moment of theBCC- and BCC Fe-C systems was evaluated. The systems Fe-0.40C, Fe-0.79C and Fe-1.19C mass% with mass% were considered. It is shown that the tetragonality of the Fe-C system increases linearly with increasing carbon content and is in good agreement with experimental results. The average magnetic moment on Fe atoms also increases linearly with increasing carbon content. At the same time, the magnetic moment of Fe atoms located in the immediate vicinity of carbon atoms is less than in pure iron, and the atoms of the second coordination sphere, on the contrary, have more. It is shown that this is primarily due to the magneto-volume effect, whereas the effect of tetragonal distortion of the lattice is secondary. Keywords: computer simulation, Fe-C, magnetic moment, tetragonality, magneto-volume effect.
  1. G.V. Kurdyumov, L.M. Utevsky, R.I. Entin. Transformations in iron and steel. Nauka, M. (1977). 236 p. (in Russian)
  2. P. Kumar, O. Leupold, I. Sergueev, H.-C. Wille, M. Gupta. Appl. Surf. Sci. 597, 153611 (2022)
  3. N. Kazama, N. Heiman, R.L. White. J. Appl. Phys. 49, 3, 1706 (1978)
  4. K. Mitsuoka, H. Miyajima, H. Ino, S. Chikazumi. J. Phys. Soc. Jpn. 53, 7, 2381 (1984)
  5. H. Ohtsuka, V.A. Dinh, T. Ohno, K. Tsuzaki, K. Tsuchiya, R. Sahara, H. Kitazawa, T. Nakamura. ISIJ Int. 55, 11, 2483 (2015)
  6. K. Schwarz, P. Blaha, G.K.H. Madsen. Comp. Phys. Commun. 147, 71 (2002)
  7. R.M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2004). 624 p
  8. P. Kostenetskiy, P. Semenikhina. GloSIC. IEEE 1 (2018)
  9. Y.M. Ridnyi, A.A. Mirzoev, D.A. Mirzaev, V.M. Schastlivtsev. Phys. Met. Metallogr. 119, 6, 576 (2018)
  10. J. Kanamori, K. Terakura. J. Phys. Soc. Jpn. 70, 5, 1433 (2001)
  11. W.A. Harrison. Solid State Theory. Dover Publications (1979). 554 p
  12. A.G. Khachaturyan. Theory of structural transformations in solids. Wiley (1983). 592 p
  13. A.A. Mirzoev, Y.M. Ridnyi. J. Alloys Compd. 883, 160850 (2021)
  14. V.L. Moruzzi, P.M. Marcus. Phys. Rev. B 38, 1613 (1988)
  15. P. Mohn. Magnetism in the Solid State: An Introduction. Springer Series in Solid-State Sciences. Springer (2003). 229 p
  16. C.M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, H.W. Zandbergen. Phys. Rev. Lett. 105, 5, 055503 (2010)
  17. S.K. Chen, S. Jin, T.H. Tiefel, Y.F. Hsieh, E.M. Gyorgy, D.W. Johnson. J. Appl. Phys. 70, 10, 6247 (1991)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245