Phase states of solid solution (1-x)PbFe0.5Nb0.5O3-xPbTiO3. Description based on multiminimum models
Ivliev M. P.1, Raevskaya S. I.1, Titov V. V.1, Rayevsky I. P.1, Malitskaya M. A.1
1Southern Federal University, Research Institute of Physics, Rostov-on-Don, Russia
Email: ivlievmp@rambler.ru

PDF
Based on the composition of two multiminimum models, a statistical model has been developed on the basis of which the formation of tetragonal and monoclinic ferroelectric phases in a solid solution (1-x)PbFe0.5Nb0.5O3-xPbTiO3 has been investigated and described. By selecting the parameters of the model, it was possible to reproduce the diagram T(x) of this solid solution. The peculiarity of the diagram is that when approaching the concentration of x~0.1, the temperature of the phase transition between the tetragonal and monoclinic phases decrease sharply, turning to zero. It is shown that the disappearance of the monoclinic phase is due to the specifics of the statistical properties of the eight-minimum model describing the subsystem of octahedra with eight minima. The features of the thermodynamic properties of a solid solution in the vicinity of the morphotropic boundary between the tetragonal and monoclinic phases are also investigated. Keywords: ferroelectrics, phase transitions, monoclinic phase, morphotropic boundary.
  1. V. Bonny, M. Bonin, P. Sciau, K.J. Schenk, G. Chapuis. Solid State Commun. 102, 5, 347 (1997)
  2. N. Lampis, P. Sciau, A. Geddo-Lehmann. J. Phys.: Condens. Matter 11, 17, 3489 (1999)
  3. A Falqui, N. Lampis, A. Geddo-Lehmann, G. Pinna. J. Phys. Chem. B 109, 48, 22967 (2005)
  4. S.A. Ivanov, R. Tellgren, H. Rundlof, N.W. Thomas, S. Ananta. J. Phys.: Condens. Matter 12, 11, 2393 (2000)
  5. M.P. Ivliev, S.I. Raevskaya, V.V. Titov, I.P. Raevski. Phys. Solid State 64, 12 2034 (2022)
  6. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H.-K. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu. Nature 451, 7178, 545 (2008)
  7. I.P. Raevski, S.P. Kubrin, S.I. Raevskaya, S.A. Prosandeev, M.A. Malitskaya, V.V. Titov, D.A. Sarychev, A.V. Blazhevich, I. Zakharchenko. IEEE Trans. Ultrason. Ferroelect. Freq. Control 59, 9, 1872 (2012)
  8. S.P. Singh, S.M. Yusuf, S. Yoon, S. Baik, N. Shin, D. Pandey. Acta Mater. 58, 16, 5381 (2010)
  9. B. Noheda, J.A. Gonzalo, L.E. Cross, S.-E. Park, D.E. Cox, G. Shirane. Appl. Phys. Lett. 74, 14, 2059 (1999)
  10. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, G. Shirane. Phys. Rev. B 61, 13, 8687 (2000)
  11. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross. Phys. Rev. B 63, 1, 014103 (2001)
  12. Z.-G. Ye, B. Noheda, M. Dong, D. Cox, G. Shirane. Phys. Rev. B 64, 18, 184114 (2001)
  13. W. Gorsky. Z. Physik 50, 64 (1928)
  14. W.L. Bragg, E.J. Williams. Proc. R. Soc. A 145, 855, 699 (1934)
  15. M.P. Ivliev, S.I. Raevskaya, I.P. Raevski, V.A. Shuvaeva, I.V. Pirog. Phys. Solid State 49, 4, 769 (2007)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru