Development and characterization of magnetic nanoparticles Co1-xZnxFe2O4 (0≤ x≤0.6) for biomedical applications
Kamzin A. S.1, Obaidat I. M.2, Semenov V. G.3, Narayanaswamy V.4,5, Al-Omari I. A.6, Issa B.4,5,7, Buryanenko I. V.8
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, United Arab Emirates University, Al-Ain, UAE
3St. Petersburg State University, St. Petersburg, Russia
4Research Institute of Medical Sharjah, UAE
5Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, UAE
6Department of Physics, Sultan Qaboos University, Muscat, Sultanate of Oman
7Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
8Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The results of studies of the properties of co-deposition of magnetic nanoparticles (MNPs) of Co1-xZnxFe2O4 spinel ferrites synthesized (at x=0.0; 0.1; 0.2; 0.4; 0.6) in order to synthesize magnetic particles for biomedical applications. X-ray diffraction (XRD), raman spectra, magnetic measurements and Mossbauer spectroscopy (MS) were used to study the Co1-xZnxFe2O4 MNPs. It was found that the synthesized MNPs CoxZn1-xFe2O4 are single-phase. According to the results of XRD measurements, it was found that the average sizes of crystallites are 13 nm for CoFe2O4 (x=0) and, with an increase in the Zn concentration, they decrease to 7 nm for Co1-xZnxFe2O4 (x=0.6), which is consistent with the Mossbauer data, which showed that the sizes of crystallites vary from 14 to 8 nm. In the raman spectra of the Co1-xZnxFe2O4 MNPs in the region of ~620 cm-1, splitting of the A1g, line is observed, indicating that the studied particles have an inverse spinel structure. The change in the ratio between intensities of A1g (1) and A1g (2) peaks is indicative of a significant redistribution of Co2+ and Fe3+ cations between tetrahedral andoctahedral positions in Co1-xZnxFe2O4 MNPs as the quantity of Zn increases, which is confirmed by the Mossbauer data. It is found that small sizes of MNPs result in a strengthening of the effects of size and an effect of surface on the magnetic structure of the surface layer. The MS analysis has shown that there is a layer on the MNP surface, the magnetic structure of which is different from from the structure of the crystallite volume. With increase in the quantity of Zn ions thickness of this layer increases and at x=0.6 the particle becomes completely paramagnetic. Mossbauer studies have shown that Co0.8Zn0.2Fe2O4 (x=0.2) particles are inthe superparamagnetic state and theirmagnetic blocking temperature is ~315 K, which is the most acceptable for the treatment of cancer by the magnetic hyperthermia method. Keywords: CoxMn1-xFe2O4, spinel ferrites, magnetic structure, superparamagnetism, Mossbauer spectroscopy, materials for biomedicine.
  1. J.A. Ramos-Guivar, E.O. Lopez, J.-M. Greneche, F.J. Litterst, E.C. Passamani. Appl. Surf. Sci. 538, 148021 (2021). https://doi.org/10.1016/j.apsusc.2020.148021
  2. M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomater. 11, 7, 1787 (2021). https://doi.org/10.3390/nano11071787
  3. S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika 22, 4, 411 (2015) (in Russian)
  4. M.A.A. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C.M. Lucaciu, O. Ersen. Int. J.Mol. Sci. 21, 20, 27775 (2020). DOI: 10.3390/ijms21207775
  5. E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. Adv. 6, 100163 (2021). DOI: https://doi.org/10.1016/j.apsadv.2021.100163
  6. M.G.M. Schneider, M.J. Marti n, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics 14, 1, 204 (2022). https://doi.org/10.3390/pharmaceutics14010204
  7. I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Princip. Magn. Hyperthermia. Magnetochemistry 5, 4, 67 (2019). DOI: 10.3390/magnetochemistry5040067
  8. X. Yu, S. Ding, R. Yang, C. Wu, W. Zhang. Ceram. Int. 47, 5, 5909 (2021). https://doi.org/10.1016/j.ceramint.2020.11.049
  9. M. Veverka, P. Veverka, Z. Jirak, O. Kaman, K. Kniv zek, M. Maryv sko, E. Pollert, K. Zavv eta. J.Magn. Magn. Mater. 322, 16, 2386 (2010). https://doi.org/10.1016/j.jmmm.2010.02.042
  10. A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni. Cryst. Eng. Commun. 20, 35, 5091 (2018)
  11. K. Sarkar, R. Mondal, S. Dey, S. Majumder, S. Kumar. J.Magn. Magn. Mater. 487, 165303 (2019)
  12. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021). https://doi.org/10.3390/nano11051231
  13. A.S. Kamzin, I.M. Obaidat, V.G. Semenov,, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko, FTT 64, 6, 712 (2022). DOI: 10.21883/FTT.2022.06.52406.298
  14. S. Ranoo, B.B. Lahiri, S.P. Damodaran, J. Philip. J. Mol. Liquids 360, 119444 (2022). https://doi.org/10.1016/j.molliq.2022.119444
  15. I.M. Obaidat, B. Issa, Y. Haik. Nanomater. 5, 1, 63 (2015). DOI: 10.3390/nano5010063
  16. U.M. Engelmann, A.A. Roeth, D. Eberbeck, E.M. Buhl, U.P. Neumann, T. Schmitz-Rode, I. Slabu. Sci. Rep. 8, 13210 (2018). DOI: 10.1038/s41598-018-31553-9
  17. E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn. 34, 3, 913 (2021). https://doi.org/10.1007/s10948-020-05800-y
  18. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee. Ceram. Int. 46, 18, 28035 (2020)
  19. S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder. Mater. Lett. 162, 60 (2016). http://dx.doi.org/10.1016/j.matlet.2015.09.066
  20. M. Liu, M. Lu, L. Wang, S. Xu, J. Zhao, H. Li. J. Mater. Sci. 51, 11, 5487 (2016). DOI: 10.1007/s10853-016-9853-3
  21. G. Lavorato, M. Alzamora, C. Contreras, G. Burlandy, F.J. Litterst, E. Baggio-Saitovitch. Particle 39, 4, 1900061 (2019). https://doi.org/10.1002/ppsc.201900061
  22. K.K. Kefeni, T.A.M. Msagati, T.T. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
  23. F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis. J. Nanosci. Nanotechnol. 19, 8, 4888 (2019)
  24. O. Cadar, T. Dippong, M. Senila, E.-A. Levei. "Progress, Challenges and Opportunities in Divalent Transition Metal-Doped Cobalt Ferrites Nanoparticles Applications", Ch. 5. In: Advanced Functional Materials / Eds N. Tasaltin, P.S. Nnamchi, S. Saud. IntechOpen (2020). DOI: 10.5772/intechopen.93298
  25. Z. Karimi, L. Karimi, H. Shokrollahi. Mater. Sci. Eng. C 33, 5, 2465 (2013). https://doi.org/10.1016/j.msec.2013.01.045
  26. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Materials 11, 10, 1799 (2018). DOI: 10.3390/ma11101799
  27. G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio. J. Magn. Magn. Mater. 311, 1, 10 (2007). https://doi.org/10.1016/j.jmmm.2006.11.157
  28. R.S. Yadav, J. Havlica, M. Hnatko, P. v Sajgali k, C. Alexander, M. Palou, E. Barton ckova, M. Bohav c, F. Frajkorova, J. Masilko, M. Zmrzly, L. Kalina, M. Hajduchova, V. Enev. J. Magn. Magn. Mater. 378, 190 (2015). https://doi.org/10.1016/j.jmmm.2014.11.027
  29. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav. J. Appl. Phys. 108, 9, 093920 (2010)
  30. F. Nakagomi, P.E.N. de Souza, T.J. Castro, V.K. Garg, A.C. Oliveira, F.C.E. Silva, A. Franco Jr, P.C. Morais, S.W. da Silva. J. Alloy. Compd. 842, 155751 (2020). https://doi.org/10.1016/j.jallcom.2020.155751
  31. B.N. Pianciola, E. Lima, H.E. Troiani, L.C.C.M. Nagamine, R. Cohen, R.D. Zysler. J. Magn. Magn. Mater. 377, 44 (2015). https://doi.org/10.1016/j.jmmm.2014.10.054
  32. H.L. Andersen, C. Granados-Miralles, M. Saura-Muzquiz, M. Stingaciu, J. Larsen, F. S ndergaard-Pedersen, J.V. Ahlburg, L. Keller, C. Frandsen, M. Christensen. Mater. Chem. Front. 3, 4, 668 (2019)
  33. A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova. Materials 13, 21, 5014 (2020). DOI: 10.3390/ma13215014
  34. M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C. De Julian Fernandez, A. Lascialfari, C. Sangregorio. J.Phys. Chem. C 123, 10, 6148 (2019). https://doi.org/10.1021/acs.jpcc.8b10998
  35. T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pedziwiatr, I. Mironyuk, R. Gargula, P. Kurzyd o, A. Shyichuk. New J.Chem. 43, 7, 3038 (2019).
  36. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, T.K. Nguyen, C.C. Thanh. Nanoscale 8, 19, 10124 (2016). DOI: 10.1039/c6nr01303a
  37. M. Schmidt, H.L. Andersen, C. Granados-Miralles, M. Saura-Muzquiz, M. Stingaciu, M. Christensen. Dalton Trans. 45, 15, 6439 (2016). https://doi.org/10.1039/c5dt04701c
  38. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar. RSC Adv. 5, 3, 2338 (2015). https://doi.org/10.1039/c4ra08342c
  39. A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 156 (2017) DOI: 10.1134/S1063783417010127
  40. A. Ramakrishna, N. Murali, Tulu Wegayehu Mammo, K. Samatha, V. Veeraiah. Physica B: Condens. Matter. 534, 134 (2018). https://doi.org/10.1016/j.physb.2018.01.033
  41. A. Manikandan, L. John Kennedy, M. Bououdina, J. Judith Vijaya. J.Magn. Magn. Mater. 349, 249 (2014). https://doi.org/10.1016/j.jmmm.2013.09.013
  42. I. Sharifi, H. Shokrollahi. J. Magn. Magn. Mater. 324, 15, 2397 (2012). https://doi.org/10.1016/j.jmmm.2012.03.008
  43. G. Barrera, M. Coisson, F. Celegato, S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, P. Tiberto. J.Magn. Magn. Mater. 456, 372 (2018). https://doi.org/10.1016/j.jmmm.2018.02.072
  44. P. Coppola, F.G. da Silva, G. Gomide, F.L.O. Paula, A.F.C. Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino. J. Nanopart. Res. 18, 5, 138 (2016). https://doi.org/10.1007/s11051-016-3430-1
  45. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak. J. Alloy. Compd. 694, 777 (2017). https://doi.org/10.1016/j.jallcom.2016.10.067
  46. R.N. Bhowmik, R. Ranganathan. J. Magn. Magn. Mater. 248, 1, 101 (2002)
  47. H. Parmar, P. Acharya, R.V. Upadhyay, V. Siruguri, S. Rayaprol. Solid State Commun. 153, 1, 60 (2013). https://doi.org/10.1016/j.ssc.2012.09.021
  48. R.V. Upadhyay, H. Parmar, P. Acharya, A. Banerjee. Solid State Commun. 163, 50 (2013). https://doi.org/10.1016/j.ssc.2013.02.020
  49. S. Dey, A. Roy, J. Ghose, R.N. Bhowmik, R. Ranganathan. J. Appl. Phys. 90, 8, 4138 (2001). https://doi.org/10.1063/1.1401798
  50. T. Dippong. Nanomater. (Basel) 12, 1, 107 (2022)
  51. S. Amiri, H. Shokrollahi. Mater. Sci. Eng. C 33, 1, 1 (2013). https://doi.org/10.1016/j.msec.2012.09.003
  52. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac. J. Magn. Magn. Mater. 498, 166168 (2020). https://doi.org/10.1016/j.jmmm.2019.166168
  53. G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer. J. Magn. Magn Mater. 311, 1, 46 (2007). https://doi.org/10.1016/j.jmmm.2006.11.167
  54. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen. J. Appl. Phys. 109, 7, 07A502 (2011). https://doi.org/10.1063/1.3535442
  55. T.I. Shabatina, O.I. Vernaya, V.P. Shabatin, M.Ya. Melnikov. Magnetochemistry 6, 3, 30 (2020). DOI: 10.3390/magnetochemistry6030030
  56. I. Sharifi, H. Shokrollahi. J. Magn. Magn. Mater. 334, 36 (2013). https://doi.org/10.1016/j.jmmm.2013.01.021
  57. E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran. Appl. Phys. Rev. 2, 4, 041302 (2015). DOI: 10.1063/1.4935688
  58. X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong. J. Magn. Magn. Mater. 405, 36 (2016). https://doi.org/10.1016/j.jmmm.2015.12.051
  59. S. Dey, S.K. Dey, S. Majumder, A. Poddar, P. Dasgupta, S. Banerjee, S. Kumar. Physica B 448, 247 (2014). https://doi.org/10.1016/j.physb.2014.03.073
  60. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M. Shahedi Asl. Ceram. Int. 46, 11, Part B, 18391 (2020)
  61. V. v Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker. Chem. Mater. 18, 13, 3057 (2006)
  62. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 11, 2167 (2020). DOI: 10.1134/S1063783420110153
  63. S. Morup, J.A. Dumesic, H. Tops e. In: Mossbauer spectroscopy applications / Ed. R.L. Cohen. Academic, N.Y. (1990). P. 1
  64. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
  65. V.G. Semenov, V.V. Panchuk. The Mossbauer Spectra Processing MossFit software. Private message, 2010. (in Russian)
  66. P.N. Anantharamaiah, H.M. Shashanka, R. Kumar, J.A. Chelvane, B.Sahoo. Mater. Sci. Eng. B 266, 115080 (2021)
  67. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri. AIP Advances 9, 5, 055202 (2019). https://doi.org/10.1063/1.5078411
  68. M.M. Kothawale, R. Pednekar, U.B. Gawas, S.S. Meena, N. Prasad, S. Kumar. J. Supercond. Nov. Magn. 30, 2, 395 (2017)
  69. H. Kiswanto, A. Puspitasari, E. Suharyadi, T. Kato, S. Iwata. IOP Conf. Ser.: Mater. Sci. Eng. 367, 1, 012001 (2018). DOI: 10.1088/1757-899X/367/1/012001
  70. P. Roy, S.M. Hoque, S.I. Liba, S. Choudhury. AIP Advances 8, 10, 105124 (2018). DOI: 10.1063/1.5040890
  71. V. Bartounv ek, D. Sedmidubsky, v S. Huber, M. v Svecova, P. Ulbrich, O. Jankovsky. Materials 11, 7, 1241 (2018). DOI: 10.3390/ma11071241
  72. N. Monni, V. Mameli, S.A. Sahadevan, S. Gai, C. Cannas, M.L. Mercuri. J. Nanosci. Nanotechnol. 19, 8, 5043 (2019). DOI: 10.1166/jnn.2019.16792
  73. M. Testa-Anta, M.A. Ramos-Docampo, M. Comesana-Hermo, B. Rivas-Murias, V. Salgueirino. Nanoscale Adv. 1, 6, 2086 (2019). DOI: 10.1039/C9NA00064J
  74. J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar. J. Raman Spectrosc. 42, 7, 1510 (2011)
  75. P.N. Anantharamaiah, P.A. Joy. Phys. Chem. Chem. Phys. 18, 15, 10516 (2016)
  76. P.N. Anantharamaiah, P.A. Joy. J. Phys. D 50, 43, 435005 (2017)
  77. S. Ota, Y. Takemura. J. Phys. Chem. C 123, 47, 28859 (2019). DOI: 10.1021/acs.jpcc.9b06790
  78. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sa-basivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021). https://doi.org/10.3390/nano11051231
  79. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, P. Bhatt, S. Kumar, E. Senturk, R. Kumar, N. Gupta, Alimuddin. J.Magn. Magn. Mater. 360, 21 (2014). http://dx.doi.org/10.1016/j.jmmm.2014.01.047
  80. M.I.A. AbdelMaksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J.Inorg. Organometallic Polymers. Materials 30, 9, 3709 (2020)
  81. S.C. Bhargava, P.K. Iyengar. Phys. Status Solidi B 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
  82. R.S. de Biasi, L.H.G. Cardoso. Physica B 407, 18, 3893 (2012). http://dx.doi.org/10.1016/j.physb.2012.06.017
  83. J.Z. Msomi, W.B. Dlamini, T. Moyo, P. Ezekiel. J. Magn. Magn. Mater. 373, 68 (2015). DOI: 10.1016/j.jmmm.2014.01.044
  84. B.F. Bogacz, R. Gargula, P. Kurzyd o, A.T. Pedziwiatr, T. Tatarchuk, N. Paliychuk. Acta Phys. Polonica A 134, 5, 993 (2018)
  85. A. Bouhas, M. Amzal, B. Zouranen. Mater. Chem. Phys. 33, 1--2, 80 (1993). https://doi.org/10.1016/0254-0584(93)90094-3
  86. Coey, J.M.D. Physical Review Letters 27 (17), 1140 (1971)
  87. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 2, 747 (1969)
  88. S. Dey, S.K. Dey, B. Ghosh, P. Dasgupta, A. Poddar, V.R. Reddy, S. Kumar. J. Appl. Phys. 114, 9, 093901 (2013). https://doi.org/10.1063/1.4819809
  89. F. Van Der Woude, G.A. Sawatzky. Phys. Rev. B 4, 9, 3159 (1971)
  90. E. Wu, S.J. Campbell, W.A. Kaczmareka, M. Hofmann, S.J. Kennedy. Int. J.Mater. Res. 94, 10, 1127 (2003)
  91. I.M. Obaidat, V. Mohite, B. Issa, N. Tit, Y. Haik. Cryst. Res. Tech. 44, 5, 489 (2009). DOI: 10.1002/crat.200900022
  92. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. J. Appl. Phys. 81, 8, 5552 (1997). DOI: 10.1063/1.364659
  93. K. Haneda, A.H. Morrish. J. Appl. Phys. 63, 8, 4258 (1988). DOI: 10.1063/1.340197
  94. J. Marx, H. Huang, K.S.M. Salih, W.R. Thiel, V. Schunemann. Hyperfine Interact. 237, 1, 41 (2016). DOI: 10.1007/s10751-016-1241-5
  95. M. Muroi, R. Street, P.G. McCormick, J. Amighian. Phys. Rev. B 63, 18, 184414 (2001). https://doi.org/10.1103/PhysRevB.63.184414
  96. A.S. Kamzin. J. Experim. Theoretical Phys. 89, 5, 890 (1999)
  97. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
  98. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. priklad. spektroskopii 86, 3, 374 (2019). (in Russian)
  99. E.J. Choi, Y. Ahn, S. Kim, D.H. An, K.U. Kang, B.-G. Lee, K.S. Baek, H.N. Oak. J. Magn. Magn. Mater. 262, 1, L198 (2003)
  100. Y. Kim, D. Kim, C. Lee. Physica B 337, 1-4, 42 (2003). DOI: 10.1016/S0921-4526(03)00322-3
  101. N. Moumen, P. Bonville, M.P. Pileni. J.Phys. Chem. 100, 34, 14410 (1996)
  102. S.W. Lee, C.S. Kim. J.Magn. Magn. Mater. 303, 2, e315 (2006). https://doi.org/10.1016/j.jmmm.2006.01.042
  103. H.H. Hamdeh, W.M. Hikal, S.M. Taher, J.C. Ho, N.P. Thuy, O.K. Quy, N. Hanh. J.Appl. Phys. 97, 6, 064310 (2005). DOI: 10.1063/1.1856219
  104. S.M. Patange, S.S. Desai, S.S. Meena, S.M. Yusuf, S.E. Shirsath. RSC Adv. 5, 111, 91482 (2015)
  105. G. Chandra, R.C. Srivastava, V.R. Reddy, H.M. Agrawal. J. Magn. Magn. Mater. 427, 225 (2017). http://dx.doi.org/10.1016/j.jmmm.2016.10.082
  106. M. Ristic, S. Krehula, M. Reissner, M. Jean, B. Hannoyer, S. Music. J. Mol. Structure 1140, 32 (2017).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru