Wide-band EPR spectroscopy of a Lu3Al5O12:Tb3+ crystal
Asatryan G. R.1, Shakurov G. S.2, Hovhannesyan K. L.3, Petrosyan A. G.3
1Ioffe Institute, St. Petersburg, Russia
2Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
3Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak, Armenia
Email: shakurov@kfti.knc.ru, khovhannisyan9@gmail.com, ashot.petrosyan783@gmail.com

PDF
In a single crystal of lutetium aluminum garnet (Lu3Al5O12, LuAG) in the frequency range of 37-210 GHz, at a temperature of 4.2 K, the EPR spectra of non-Kramers Tb3+ impurity ions were recorded. The measurement results indicate that Tb3+ ions replace Y3+ ions in the dodecahedral position with local D2 symmetry. The value of the g factor, the hyperfine structure constant, and the energy interval between the ground and the first excited nondegenerate sublevels of the ground multiplet are determined. Weak satellite signals were also registered, the origin of which is associated with the formation of antisite defects in the environment of paramagnetic Tb3+ centers. Keywords: hyperfine interaction, rare earth ions, spin Hamiltonian, non-Kramers ion.
  1. I. Kandarakis, D. Cavouras, G.S. Panayiotakis, C.D. Nomicos. Phys. Med. Biol. 42, 1351 (1997)
  2. Y. Liao, D. Jiang, T. Feng,J. Shi. J. Mater. Res. 20, 11, 2934 (2005)
  3. V. Khanin, A.-M. van Dongen, D. Buettner, C. Ronda, P. Rodnyi. ECS J. Solid State Sci. Technology 4, 8, R128 (2015)
  4. J. M. Ogieg o, A. Zych, K.V. Ivanovskikh, T. Justel, C.R. Ronda, A. Meijerink. J. Phys. Chem. A116, 33, 8464 (2012)
  5. C. Krankel, D.T. Marzahl, F. Moglia, G. Huber, P. Metz, Las. Photon. Rev. 10, 548 (2016)
  6. S. Kalusniak, E. Castellano-Hernandez, H. Yalcinovglu, H. Tanaka, C. Krankel. Appl. Phys. B 128, 33 (2022)
  7. E.V. Edinach, Y.A. Uspenskaya, A.S. Gurin, R.A. Babunts, H.R. Asatryan, N.G. Romanov, A.G. Badalyan, P.G. Baranov. Phys. Rev. B 100, 104435 (2019)
  8. G.R. Asatryan, E.V. Edinach, Yu.A. Uspenskaya, R.A. Babunts, A.G. Badalyan, N.G. Romanov, A.G. Petrosyan, P.G. Baranov. FTT 62, 11, 1875 (2020). (in Russian)
  9. Kh.S. Bagdasarov. Kristallizatsiya iz rasplava. In: Sovremennaya kristallografiya / Pod red. B.K. Vaynshtein. Nauka, M. (1980). T. 3. P. 337. (in Russian)
  10. A.G. Petrosyan. J. Crystal Growth 139, 372 (1994)
  11. A.G. Petrosyan, G.O. Shirinyan. Neorgan. materialy 29, 2, 258 (1993). (in Russian)
  12. A.G. Petrosyan, V.F. Popova, V.V. Gusarov, G.O. Shirinyan, C. Pedrini, P. Lecoq. J. Crystal Growth 293, 74 (2006)
  13. V.F. Tarasov, G.S. Shakurov. Appl. Magn. Res. 2, 3, 571 (1991)
  14. A. Abragam, B. Blini. Elektronnyj paramagnitnyj rezonans perekhodnykh ionov. Mir, M. (1972). (in Russian)
  15. E.G. Sharoyan, O.S. Torosyan, A.G. Petrosyan, E.A. Markosyan. Izv. AN ASSR. Fizika 12, 62 (1977). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru