The Effect Of A Strong Static Electric Field And Heating On Characteristics Of The High-Frequency Impedance Of Metal--Ferroelectric--Semiconductor Structures
Belorusov D.A. 1, Goldman E.I. 1, Chucheva G.V. 1
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia

Studies have been carried out on the effect of heating and a strong field, but pre-breakdown, effects on high-frequency characteristics of the impedance of heteroepitaxial structures Ni-Ba0.8Sr0.2TiO3-pSi with a ferroelectric thickness of 50 nm. It was shown, that regardless of the polarity of the field stress, characteristics shifted towards a positive bias, and the width of hysteresis loops decreased; plateau levels remained virtually unchanged. Heating up to 121oC led to a change in levels of the upper plateau of characteristics: for the capacity it decreased, and for the conductivity it increased; branches on the loop not only narrowed and shifted, but changed places in comparison with the original dependence (loop reverse). These results can be explained: under the field action, by the generation of additional electronic states, localized in the buffer layer at the Si-Ba1-xSrxTiO3 interface, and by heating, by the appearance of delay effects due to the development of fluctuation processes, underlying the smearing of the phase transition from ferroelectric to paraelectric condition. Keywords: High-frequency field characteristics of the impedance, the field stress, hysteresis loops, the generation of additional localized electronic states, delay effects, fluctuation processes, smearing of the phase transition.
  1. V.R. Mudinepalli, L. Feng, W.-C. Lin., B.S. Murty. J. Adv. Ceram. 4, 46 (2015)
  2. K.A. Vorotilov, V.M. Mukhortov, A.S. Sigov. Integrirovannye segnetoelektricheskie ustroystva. / Pod red. A.S. Sigova Energoatomizdat, M., (2011). 175 p. (in Russian)
  3. M.S. Ivanov, M.S. Afanasiev. Physics of the Solid State, 51, 7, 1328 (2009)
  4. D.A. Kiseliov, M.S. Afanasiev, S.A. Levashov, G.V. Chucheva. Physics of the Solid State, 57, 6, 1151 (2015)
  5. E.I. Gol.dman, A.G. Zhdan, G.V. Chucheva. Instruments and Experimental Techniques, 40, 6, 841 (1997)
  6. J. Nissan-Cohen. Appl. Surf. Sci. 39, 1-4, 511 (1989)
  7. T.R. Oldham, F.B. McLean, H.E. Boesch, J.M. McCarrity. Semicond. Sci. Technol. 4, 12, 986 (1989)
  8. M.L. Reed. Semicond. Sci. Technol. 4, 12, 980 (1989)
  9. V.A. Gritsenko. Physics-Uspekhi, 52, 9, 869 (2009)
  10. E.I. Goldman, G.V. Chucheva, D.A. Belorusov. Ceram. Int. 47, 15, 21248 (2021)
  11. D.A. Belorusov, E.I. Goldman, G.V. Chucheva. Physics of the Solid State, 63, 11, 1887 (2021) (in Russian)
  12. A.P. Levanyuk, V.V. Osipov, A.S. Sigov, A.A. Sobinin. Journal of Experimental and Theoretical Physics, 76, 1, 345 (1979)
  13. A.P. Levanyuk, B.V. Moshchinsky, A.S. Sigov. Physics of the Solid State, 23, 7, 2037 (1981)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245