Modeling of processes of irradiation of Cr/4H-SiC structures with high-energy Ar ions
Chumak M.A.1, Kalinina E.V.1, Zabrodskii V. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: equilibrium2027@yandex.ru
A comprehensive mathematical modeling of the processes of radiation defect formation under 4H-SiC irradiation with Ar ions was performed. Ultraviolet photodetectors based on Cr/4H-SiC Schottky barriers with a charge carrier concentration of 3·1015 cm-3 in a 5 μm thick CVD layer were irradiated 7 times with Ar ions with a fluence of 1·1010 cm-2 (total fluence - 7·1010 cm-2) with an energy of 53 MeV. Based on the results of measuring the external quantum efficiency of the photodetectors at different fluences of irradiation with Ar ions and modeling the irradiation processes in SRIM/TRIM, it is shown in what range of values the concentration of radiation defects should be under irradiation for a noticeable decrease in the quantum efficiency to occur up to its complete degradation at limiting fluences. For the specified concentration of charge carriers, the limiting fluence of Ar ions leading to complete degradation of Cr/4H-SiC photodetectors was determined experimentally for the first time. As a result of modeling, the ratio of silicon and carbon vacancies by the depth of the Ar ion stopping distance was determined for the first time. Key words: silicon carbide, Ar ions, irradiation, SRIM/TRIM, depth profiles, external quantum efficiency. Keywords: Silicon carbide, Ar ions, irradiation, SRIM/TRIM, depth profiles, external quantum efficiency.
- J.R. O'Connor, J.R. Smiltens. Semiconductors, 1, 388 (1960)
- J.A. Powell, P.G. Neudeck, L.G. Matus, J.B. Petit. Symp. Proc., 242, 495 (1992)
- O. Kordina, J.P. Bergman, A. Henry, E. Janzen, S. Savage, J. Andre, K. Bergman. Appl. Phys. Lett., 67 (11), 1561 (1995). https://doi.org/10.1063/1.114734
- W.J. Choyke, G. Pensl. Mrs Bull., 22 (3), 25 (1997). https://doi.org/10.1557/S0883769400032723
- Y. Zhang, W.J. Weber, W. Jiang, A. Hallen, G. Possnert. J. Appl. Phys., 91 (10), 6388 (2002). https://doi.org/10.1063/1.1469204
- P.A. Persson, L. Hultman, M.S. Janson, A. Hallen, R. Yakimova, D. Panknin, W. Skorupa. J. Appl. Phys., 92 (5), 2501 (2002). https://doi.org/10.1063/1.1499749
- A.Y. Nikiforov, P.K. Skorobogatov, D.V. Boychenko, V.S. Figurov, V.V. Luchinin, E.V. Kalinina. RADECS-2003, 527--528, 1473 (2003)
- I. Lhermitte-Sebire, J.L. Chermant, M. Levalois, E. Paumier, J. Vicens. Radiation Effects and Defects in Solids, 126 (1-4), 173 (1993). https://doi.org/10.1080/10420159308219702
- W.J. Weber, L.M. Wang, N.Yu. Nucl. Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 116 (1-4), 322 (1996). https://doi.org/10.1016/0168-583X(96)00066-3
- J. Ziegler. SRIM code. http://www.srim.org. Last access: January 17th (2022)
- P.P. Panchenko, A.A. Malakhov, S.B. Rybalka, A.V. Rad'kov. J. Radio Electron., 8, 1684 (2016)
- V.V. Muravyov, V.N. Mishenka. BGUIR Reports, 104 (2), 53 (2007) (in Russian)
- E.A. Kulchenkov, S.B. Rybalka, A.A. Demidov, A.Yu. Drakin. Appl. Mathem. Phys., 52 (1), 33 (2020). https://doi.org/10.18413/2687-0959-2020-52-1-33-40
- A.I. Mikhaylov, A.V. Afanasiev, V.A. Ilyin, V.V. Luchinin, S.A. Reshanov, M. Krieger, A. Schoner, T. Sledziewski. Semiconductors, 48 (12), 1581 (2014). https://doi.org/10.1134/S1063782614120148
- E.V. Kalinina, G.F. Kholuyanov, G.A. Onushkin, D.V. Davydov, A.M. Strel'chuk, A.O. Konstantinov, A. Hallen, A.Yu. Nikiforov, V.A. Skuratov, K. Havancsak. Semiconductors, 38, 1187 (2004). https://doi.org/10.1134/1.1808826
- S.J. Zinkle, J.W. Jones, V.A. Skuratov. MRS Symp. Proceed., 650, R3.19.1 (2000). https://doi.org/10.1557/PROC-650-R3.19
- P. Kumar, M. Belanche, N. Fur N, L. Guzenko, J. Woerle, M.E. Bathen, U. Grossner. MSF, 1092, 187 (2023). https://doi.org/10.4028/p-0y444y
- L. Liszkay, K. Havancsak, M.-F. Barthe, P. Desgardin, L. Henry, Zs. Kajcsos, G. Battistig, E. Szilagyi, V.A. Skuratov. Mater. Sci. Forum, 363, 123 (2001). https://doi.org/10.4028/www.scientific.net/MSF.363-365.123
- V.V. Kozlovski, A.E. Vasil'ev, P.A. Karasev, A.A. Lebedev. Semiconductors, 52, 310 (2018). https://doi.org/10.1134/S1063782618030132
- M.J. Madito, T.T. Hlatshwayo, V.A. Skuratov, C.B. Mtshali, N. Manyala, Z.M. Khumalo. Appl. Surf. Sci., 493, 1291 (2019). https://doi.org/10.1016/j.apsusc.2019.07.147
- A. Gottwald, U. Kroth, E. Kalinina, V. Zabrodskii. Appl. Opt., 57 (28), 8431 (2018). https://doi.org/10.1364/AO.57.008431
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.