Schottky diodes based on monocrystalline Al/AlGaN/GaN heterostructures for zero-bias microwave detection
Vostokov N. V.
1, Drozdov M. N.
1, Kalinnikov M.A.
1, Kraev S. A.
1, Lobanov D. N.
1, Yunin P.A.
11Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vostokov@ipm.sci-nnov.ru, drm@ipmras.ru, kalinnikov@ipmras.ru, kraev@ipmras.ru, dima@ipmras.ru, yunin@ipmras.ru
The microwave properties of novel all-epitaxial Al/AlGaN/GaN low-barrier Schottky diodes with near-surface polarization-induced δ-doping are studied. An original technique for on-wafer microwave measurements of test structures is used. The possibility of development of a highly sensitive zero-bias microwave detector based on a planar low-barrier metal-semiconductor-metal heterostructure, which does not require the formation of ohmic contact of the semiconductor with the metal, is demonstrated. Estimates show that the cutoff frequency of such a detector can reach approximately 100 GHz for relevant values of the detecting contact area ~ 10 μ m2. Keywords: low-barrier GaN Schottky diode, on-wafer microwave measurements, structural defects and trap states in a semiconductor, zero-bias microwave detector
- F. Sizov. Semicond. Sci. Technol., 33 (12), 123001 (2018). DOI: 10.1088/1361-6641/aae473
- L.-G. Tran, H.-K. Cha, W.-T. Park. Micro Nano Syst. Lett., 5, 14 (2017). DOI: 10.1186/s40486-017-0051-0
- E.R. Brown. Solid-State Electron., 48 (10-11), 2051 (2004). DOI: 10.1016/j.sse.2004.05.074
- V.I. Shashkin, Y.A. Drjagin, V.R. Zakamov, S.V. Krivov, L.M. Kukin, A.V. Murel, Y.I. Chechenin. Int. J. Infrared Milli. Waves, 28 (11), 945 (2007). DOI: 10.1007/s10762-007-9272-2
- P.V. Volkov, N.V. Vostokov, A.V. Goryunov, L.M. Kukin, V.V. Parshin, E.A. Serov, V.I. Shashkin. Tech. Phys. Lett., 45 (3), 239 (2019). DOI: 10.1134/S1063785019030179
- V.R. Zakamov and V.I. Shashkin. J. Commun. Technol. Electron., 56 (8), 1013 (2011). DOI: 10.1134/S1064226911060234
- S.A. Korolyov, A.P. Shikov, A.V. Goryunov, V.I. Shashkin. IEEE Sensors Lett., 4 (5), 3500404 (2020). DOI: 10.1109/LSENS.2020.2986370
- B. Kapilevich, V. Shashkin, B. Litvak, G. Yemini, A. Etinger, D. Hardon, Y. Pinhasi. IEEE Microw. Wirel. Compon. Lett., 26 (8), 637 (2016). DOI: 10.1109/LMWC.2016.2585557
- C.H.P. Lorenz, S. Hemour, K. Wu. IEEE Trans. Microw. Theory Tech., 64 (7), 2146 (2016). DOI: 10.1109/TMTT.2016.2574848
- V.T. Vo, Z. Hu. IEEE Trans. Microw. Theory Tech., 54 (11), 3836 (2006). DOI: 10.1109/TMTT.2006.884628
- Z. Zhang, R. Rajavel, P. Deelman, P. Fay. IEEE Microw. Wirel. Compon. Lett., 21 (5), 267 (2011). DOI: 10.1109/LMWC.2011.2123878
- P. Chahal, F. Morris, G. Frazier. IEEE Electron Device Lett., 26 (12), 894 (2005). DOI: 10.1109/LED.2005.859622
- K.N. Zainul Ariffin, Y. Wang, M.R.R. Abdullah, S.G. Muttlak, O.S. Abdulwahid, J. Sexton, K.W. Ian, M.J. Kelly, M. Missous. IEEE Trans. Electron Devices, 65 (1), 64 (2018). DOI: 10.1109/TED.2017.2777803
- A.C. Young, J.D. Zimmerman, E.R. Brown, A.C. Gossard. Appl. Phys. Lett., 87 (16), 163506 (2005). DOI: 10.1063/1.2112201
- H. Ito, T. Ishibashi. Jpn. J. Appl. Phys., 56 (1), 014101 (2017). DOI: 10.7567/JJAP.56.014101
- S. Nadar, M. Zaknoune, X. Wallart, C. Coinon, E. Peytavit, G. Ducournau, F. Gamand, M. Thirault, M. Werquin, S. Jonniau, N. Thouvenin, C. Gaquiere, N. Vellas, J.-F. Lampin. IEEE Trans. Terahertz Sci. Technol., 7 (6), 780 (2017). DOI: 10.1109/TTHZ.2017.2755503
- N.V. Vostokov, M.V. Revin, V.I. Shashkin. J. Appl. Phys., 127 (4), 044503 (2020). DOI: 10.1063/1.5131737
- P. Sangare, G. Ducournau, B. Grimbert, M. Faucher, C. Gaquiere. in Proc. of the 44th European Microwave Conference (Rome, Italy, 6-9 Oct., 2014), p. 806. DOI: 10.1109/EuMC.2014.6986557
- Q. Zhou, L. Liu, X. Zhou, A. Zhang, Y. Shi, Z. Wang, Y. G. Wang, Y. Fang, Y. Lv, Z. Feng, B. Zhang. Electron. Lett., 51 (23), 1889 (2015). DOI: 10.1049/el.2015.2885
- S. Regensburger, A.K. Mukherjee, H. Lu, A.C. Gossard, S. Preu, Proc. of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (Nagoya, Jpn, 9-14 Sept., 2018). DOI: 10.1109/IRMMW-THz.2018.8510198
- R. Quay. Gallium Nitride Electronics (Springer, 2008)
- Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, ed. by C. Wood, D. Jena (Springer, 2008)
- N.V. Vostokov, M.N. Drozdov, O.I. Khrykin, P.A. Yunin, V.I. Shashkin. Appl. Phys. Lett., 116 (1), 013505 (2020). DOI: 10.1063/1.5132307
- N.V. Vostokov, M.N. Drozdov, S.A. Kraev, D.N. Lobanov, A.V. Novikov, P.A. Yunin. Appl. Phys. Lett., 121 (23), 233507 (2022). DOI: 10.1063/5.0131031
- N.V. Vostokov, E.A. Koblov, S.A. Korolyov, M.V. Revin, V.I. Shashkin. IEEE Trans. Electron Devices, 65 (4), 1327 (2018). DOI: 10.1109/TED.2018.2803448
- J.D. Wiley. IEEE Trans. Electron Devices, 25 (11), 1317 (1978). DOI: 10.1109/T-ED.1978.19272
- N.V. Vostokov, S.A. Korolev, V.I. Shashkin. Tech. Phys., 59 (7), 1036 (2014). DOI: 10.1134/S1063784214070287
- J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-State Electron., 23 (11), 1159 (1980). DOI: 10.1016/0038-1101(80)90028-3
- W.G. Oldham, S.S. Naik. Solid-State Electron., 15 (10), 1085 (1972). DOI: 10.1016/0038-1101(72)90167-0
- T. Mitsunaga, Y. Yagishita, M. Kurouchi, S. Kishimoto, J. Osaka, T. Mizutani. Phys. Stat. Sol. C, 5 (9), 3032 (2008). DOI: 10.1002/pssc.200779296
- W. Kim, A.E. Botchkarev, A. Salvador, G. Popovici, H. Tang, H. Morkoc. J. Appl. Phys., 82 (1), 219 (1997). DOI: 10.1063/1.365801
- J.K. Sheu, G.C. Chi. J. Phys.: Condens. Matter., 14 (22), R657 (2002). DOI: 10.1088/0953-8984/14/22/201.
- D.K. Schroder. Semiconductor Material and Device Characterization, 3rd ed. (John Wiley \& Sons, Inc., Hoboken, 2006)
- A.Y. Polyakov, I.-H. Lee, Mat. Sci. Eng. R, 94, 1 (2015). DOI: 10.1016/j.mser.2015.05.001
- A.M. Cowley, H.O. Sorensen, IEEE Trans. Microw. Theory Tech., 14 (12), 588 (1966). DOI: 10.1109/TMTT.1966.1126337.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.