Schottky diodes based on monocrystalline Al/AlGaN/GaN heterostructures for zero-bias microwave detection
Vostokov N. V.1, Drozdov M. N.1, Kalinnikov M.A.1, Kraev S. A.1, Lobanov D. N. 1, Yunin P.A. 1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vostokov@ipm.sci-nnov.ru, drm@ipmras.ru, kalinnikov@ipmras.ru, kraev@ipmras.ru, dima@ipmras.ru, yunin@ipmras.ru

PDF
The microwave properties of novel all-epitaxial Al/AlGaN/GaN low-barrier Schottky diodes with near-surface polarization-induced δ-doping are studied. An original technique for on-wafer microwave measurements of test structures is used. The possibility of development of a highly sensitive zero-bias microwave detector based on a planar low-barrier metal-semiconductor-metal heterostructure, which does not require the formation of ohmic contact of the semiconductor with the metal, is demonstrated. Estimates show that the cutoff frequency of such a detector can reach approximately 100 GHz for relevant values of the detecting contact area ~ 10 μ m2. Keywords: low-barrier GaN Schottky diode, on-wafer microwave measurements, structural defects and trap states in a semiconductor, zero-bias microwave detector
  1. F. Sizov. Semicond. Sci. Technol., 33 (12), 123001 (2018). DOI: 10.1088/1361-6641/aae473
  2. L.-G. Tran, H.-K. Cha, W.-T. Park. Micro Nano Syst. Lett., 5, 14 (2017). DOI: 10.1186/s40486-017-0051-0
  3. E.R. Brown. Solid-State Electron., 48 (10-11), 2051 (2004). DOI: 10.1016/j.sse.2004.05.074
  4. V.I. Shashkin, Y.A. Drjagin, V.R. Zakamov, S.V. Krivov, L.M. Kukin, A.V. Murel, Y.I. Chechenin. Int. J. Infrared Milli. Waves, 28 (11), 945 (2007). DOI: 10.1007/s10762-007-9272-2
  5. P.V. Volkov, N.V. Vostokov, A.V. Goryunov, L.M. Kukin, V.V. Parshin, E.A. Serov, V.I. Shashkin. Tech. Phys. Lett., 45 (3), 239 (2019). DOI: 10.1134/S1063785019030179
  6. V.R. Zakamov and V.I. Shashkin. J. Commun. Technol. Electron., 56 (8), 1013 (2011). DOI: 10.1134/S1064226911060234
  7. S.A. Korolyov, A.P. Shikov, A.V. Goryunov, V.I. Shashkin. IEEE Sensors Lett., 4 (5), 3500404 (2020). DOI: 10.1109/LSENS.2020.2986370
  8. B. Kapilevich, V. Shashkin, B. Litvak, G. Yemini, A. Etinger, D. Hardon, Y. Pinhasi. IEEE Microw. Wirel. Compon. Lett., 26 (8), 637 (2016). DOI: 10.1109/LMWC.2016.2585557
  9. C.H.P. Lorenz, S. Hemour, K. Wu. IEEE Trans. Microw. Theory Tech., 64 (7), 2146 (2016). DOI: 10.1109/TMTT.2016.2574848
  10. V.T. Vo, Z. Hu. IEEE Trans. Microw. Theory Tech., 54 (11), 3836 (2006). DOI: 10.1109/TMTT.2006.884628
  11. Z. Zhang, R. Rajavel, P. Deelman, P. Fay. IEEE Microw. Wirel. Compon. Lett., 21 (5), 267 (2011). DOI: 10.1109/LMWC.2011.2123878
  12. P. Chahal, F. Morris, G. Frazier. IEEE Electron Device Lett., 26 (12), 894 (2005). DOI: 10.1109/LED.2005.859622
  13. K.N. Zainul Ariffin, Y. Wang, M.R.R. Abdullah, S.G. Muttlak, O.S. Abdulwahid, J. Sexton, K.W. Ian, M.J. Kelly, M. Missous. IEEE Trans. Electron Devices, 65 (1), 64 (2018). DOI: 10.1109/TED.2017.2777803
  14. A.C. Young, J.D. Zimmerman, E.R. Brown, A.C. Gossard. Appl. Phys. Lett., 87 (16), 163506 (2005). DOI: 10.1063/1.2112201
  15. H. Ito, T. Ishibashi. Jpn. J. Appl. Phys., 56 (1), 014101 (2017). DOI: 10.7567/JJAP.56.014101
  16. S. Nadar, M. Zaknoune, X. Wallart, C. Coinon, E. Peytavit, G. Ducournau, F. Gamand, M. Thirault, M. Werquin, S. Jonniau, N. Thouvenin, C. Gaquiere, N. Vellas, J.-F. Lampin. IEEE Trans. Terahertz Sci. Technol., 7 (6), 780 (2017). DOI: 10.1109/TTHZ.2017.2755503
  17. N.V. Vostokov, M.V. Revin, V.I. Shashkin. J. Appl. Phys., 127 (4), 044503 (2020). DOI: 10.1063/1.5131737
  18. P. Sangare, G. Ducournau, B. Grimbert, M. Faucher, C. Gaquiere. in Proc. of the 44th European Microwave Conference (Rome, Italy, 6-9 Oct., 2014), p. 806. DOI: 10.1109/EuMC.2014.6986557
  19. Q. Zhou, L. Liu, X. Zhou, A. Zhang, Y. Shi, Z. Wang, Y. G. Wang, Y. Fang, Y. Lv, Z. Feng, B. Zhang. Electron. Lett., 51 (23), 1889 (2015). DOI: 10.1049/el.2015.2885
  20. S. Regensburger, A.K. Mukherjee, H. Lu, A.C. Gossard, S. Preu, Proc. of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (Nagoya, Jpn, 9-14 Sept., 2018). DOI: 10.1109/IRMMW-THz.2018.8510198
  21. R. Quay. Gallium Nitride Electronics (Springer, 2008)
  22. Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, ed. by C. Wood, D. Jena (Springer, 2008)
  23. N.V. Vostokov, M.N. Drozdov, O.I. Khrykin, P.A. Yunin, V.I. Shashkin. Appl. Phys. Lett., 116 (1), 013505 (2020). DOI: 10.1063/1.5132307
  24. N.V. Vostokov, M.N. Drozdov, S.A. Kraev, D.N. Lobanov, A.V. Novikov, P.A. Yunin. Appl. Phys. Lett., 121 (23), 233507 (2022). DOI: 10.1063/5.0131031
  25. N.V. Vostokov, E.A. Koblov, S.A. Korolyov, M.V. Revin, V.I. Shashkin. IEEE Trans. Electron Devices, 65 (4), 1327 (2018). DOI: 10.1109/TED.2018.2803448
  26. J.D. Wiley. IEEE Trans. Electron Devices, 25 (11), 1317 (1978). DOI: 10.1109/T-ED.1978.19272
  27. N.V. Vostokov, S.A. Korolev, V.I. Shashkin. Tech. Phys., 59 (7), 1036 (2014). DOI: 10.1134/S1063784214070287
  28. J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-State Electron., 23 (11), 1159 (1980). DOI: 10.1016/0038-1101(80)90028-3
  29. W.G. Oldham, S.S. Naik. Solid-State Electron., 15 (10), 1085 (1972). DOI: 10.1016/0038-1101(72)90167-0
  30. T. Mitsunaga, Y. Yagishita, M. Kurouchi, S. Kishimoto, J. Osaka, T. Mizutani. Phys. Stat. Sol. C, 5 (9), 3032 (2008). DOI: 10.1002/pssc.200779296
  31. W. Kim, A.E. Botchkarev, A. Salvador, G. Popovici, H. Tang, H. Morkoc. J. Appl. Phys., 82 (1), 219 (1997). DOI: 10.1063/1.365801
  32. J.K. Sheu, G.C. Chi. J. Phys.: Condens. Matter., 14 (22), R657 (2002). DOI: 10.1088/0953-8984/14/22/201.
  33. D.K. Schroder. Semiconductor Material and Device Characterization, 3rd ed. (John Wiley \& Sons, Inc., Hoboken, 2006)
  34. A.Y. Polyakov, I.-H. Lee, Mat. Sci. Eng. R, 94, 1 (2015). DOI: 10.1016/j.mser.2015.05.001
  35. A.M. Cowley, H.O. Sorensen, IEEE Trans. Microw. Theory Tech., 14 (12), 588 (1966). DOI: 10.1109/TMTT.1966.1126337.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru