Structure of copper centers in zeolite-mordenite at the activation stage according to XAFS and computer modelling data
Sukharina G. B. 1, Gladchenko-Djevelekis Ya. N. 1, Ermakova A. M. 1, Kulaev K. D.1, Pryadchenko V. V. 1, Ponosova E. E. 1, Babayants A.S. 1, Avakyan L. A. 1, Bugaev L. A. 1
1Southern Federal University, Rostov-on-Don, Russia
Email: gbsukharina@sfedu.ru, ygl@sfedu.ru, aleker@sfedu.ru, kulaev@sfedu.ru, vvpryadchenko@sfedu.ru, ponosova@sfedu.ru, babaiants@sfedu.ru, laavakyan@sfedu.ru, bugaev@sfedu.ru

PDF
The results of the investigation on the local structure of copper centers in mordenite-type zeolites obtained by solid-phase ion exchange were presented. The location of probable models of copper centers in the mordenite-type zeolite framework for the most significant stage of the catalytic cycle, oxygen activation, was established and the features of 3D-models of the copper's near environment at the studied stage of the catalytic cycle were determined using a complex technique combining computer modelling with machine learning elements and X-ray absorption spectroscopy XAFS. Keywords: zeolites, copper centers, oxygen activation, XAFS, computer modelling, DFT.
  1. E.M.C. Alayon, M. Nachtegaal, A. Bodi, M. Ranocchiari, J.A. van Bokhoven. Phys. Chem. Chem. Phys., 17, 7681 (2015). https://doi.org/10.1039/C4CP03226H
  2. E.M.C. Alayon, M. Nachtegaal, E. Kleymenov, J.A. van Bokhoven. Microporous Mesoporous Mater., 166, 131 (2013). https://doi.org/10.1016/j.micromeso.2012.04.054
  3. Y. Li, L. Li, J. Yu. Chem., 3, 928 (2017). https://doi.org/10.1016/j.chempr.2017.10.009
  4. Y. Li, J. Yu. Nat. Rev. Mater., 6, 1156 (2021). https://doi.org/10.1038/s41578-021-00347-3
  5. M. Moliner, C. Martinez, A. Corma. Chem. Mater., 26, 246 (2014). https://doi.org/10.1021/cm4015095
  6. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis. Chem. Soc. Rev., 44, 7128 (2015). https://doi.org/10.1039/C5CS00292C
  7. T. Bein, S. Mintova. Adv. Applications Zeolites, 263 (2005). https://doi.org/10.1016/S0167-2991(05)80015-1
  8. S. Mintova, M. Jaber, V. Valtchev. Chem. Soc. Rev., 44, 7207 (2015). https://doi.org/10.1039/C5CS00210A
  9. E.T.C. Vogt, B.M. Weckhuysen. Chem. Soc. Rev., 44, 7342 (2015). https://doi.org/10.1039/C5CS00376H
  10. M. Senila, O. Cadar. Heliyon, 10, e25303 (2024). https://doi.org/10.1016/j.heliyon.2024.e25303
  11. W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang. Chem. Soc. Rev., 48, 3193 (2019). https://doi.org/10.1039/C8CS00502H
  12. X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen. Chem. Rev., 120, 7984 (2020). https://doi.org/10.1021/acs.chemrev.9b00723
  13. Q. Zhang, J. Yu, A. Corma. Adv. Mater., 32, (2020). https://doi.org/10.1002/adma.202002927
  14. M. Saunois, A.R. Stavert, B. Poulter, P. Bousquet, J.G. Canadell, R.B. Jackson, P.A. Raymond, E.J. Dlugokencky, S. Houweling, P.K. Patra, P. Ciais, V.K. Arora, D. Bastviken, P. Bergamaschi, D.R. Blake, G. Brailsford, L. Bruhwiler, K.M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P.M. Crill, K. Covey, C.L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M.I. Hegglin, L. Hoglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K.M. Jensen, F. Joos, T. Kleinen, P.B. Krummel, R.L. Langenfelds, G.G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K.C. McDonald, J. McNorton, P.A. Miller, J.R. Melton, I. Morino, J. Muller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R.J. Parker, C. Peng, S. Peng, G.P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W.J. Riley, J.A. Rosentreter, A. Segers, I.J. Simpson, H. Shi, S.J. Smith, L.P. Steele, B.F. Thornton, H. Tian, Y. Tohjima, F.N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T.S. Weber, M. van Weele, G.R. van der Werf, R.F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang. Earth Syst. Sci. Data, 12, 1561 (2020). https://doi.org/10.5194/essd-12-1561-2020
  15. J.E. Rorrer, G.T. Beckham, Y. Roman-Leshkov. JACS Au. 1, 8--12 (2021). https://doi.org/10.1021/jacsau.0c00041
  16. Y. Gao, J. Jiang, Y. Meng, F. Yan, A. Aihemaiti. Energy Convers. Manag., 171, 133 (2018). https://doi.org/10.1016/j.enconman.2018.05.083
  17. S. Prodinger, K. Kvande, B. Arstad, E. Borfecchia, P. Beato, S. Svelle. ACS Catal., 12, 2166 (2022). https://doi.org/10.1021/acscatal.1c05091
  18. N.J. Gunsalus, A. Koppaka, S.H. Park, S.M. Bischof, B.G. Hashiguchi, R.A. Periana. Chem. Rev., 117, 8521 (2017). https://doi.org/10.1021/acs.chemrev.6b00739
  19. M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt. J. Am. Chem. Soc., 127, 1394 (2005). https://doi.org/10.1021/ja047158u
  20. Ya.N. Gladchenko-Djevelekis, G.B. Sukharina, A.M. Ermakova, K.D. Kulaev, V.V. Pryadchenko, E.E. Ponosova, E.I. Shemetova, L.A. Avakyan, L.A. Bugaev. Tech. Phys. 69, 586 (2024). https://doi.org/10.61011/JTF.2024.04.57533.287-23
  21. M.A. Newton, A.J. Knorpp, V.L. Sushkevich, D. Palagin, J.A. van Bokhoven. Chem. Soc. Rev., 49, 1449 (2020). https://doi.org/10.1039/C7CS00709D
  22. A.J. Knorpp, M.A. Newton, S.C.M. Mizuno, J. Zhu, H. Mebrate, A.B. Pinar, J.A. van Bokhoven. Chem. Commun., 55, 11794 (2019). https://doi.org/10.1039/C9CC05659A
  23. V.V. Srabionyan, G.B. Sukharina, T.I. Kurzina, V.A. Durymanov, A.M. Ermakova, L.A. Avakyan, E.M.C. Alayon, M. Nachtegaal, J.A. van Bokhoven, L.A. Bugaev. J. Phys. Chem. C, 125, 25867 (2021). https://doi.org/10.1021/acs.jpcc.1c08240
  24. V.V. Pryadchenko, G.B. Sukharina, A.M. Ermakova, S.V. Bazovaya, T.I. Kurzina, V.A. Durymanov, V.A. Tolstopyatenko, V.V. Srabionyan, L.A. Avakyan, L.A. Bugaev. Tech. Phys., 66, 1018 (2021). https://doi.org/10.1134/S1063784221070124
  25. V.V. Srabionyan, G.B. Sukharina, S.Y. Kaptelinin, V.A. Durymanov, A.M. Ermakova, T.I. Kurzina, L.A. Avakyan, L.A. Bugaev. Phys. Solid State, 62, 1222 (2020). https://doi.org/10.1134/S1063783420070252
  26. N. Argaman, G. Makov. Am. J. Phys., 68, 69 (2000). https://doi.org/10.1119/1.19375
  27. S.E. Bozbag, E.M.C. Alayon, J. Pech..ek, M. Nachtegaal, M. Ranocchiari, J.A. van Bokhoven. Catal. Sci. Technol., 6, 5011 (2016). https://doi.org/10.1039/C6CY00041J
  28. B. Ravel, M. Newville. J. Synchrotron Radiat., 12, 537 (2005). https://doi.org/10.1107/S0909049505012719
  29. Y. Joly. Phys. Rev. B, 63, 125120 (2001). https://doi.org/10.1103/PhysRevB.63.125120
  30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys. Condens. Matter., 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
  31. Electronic source. Available at: https://pytorch.org/
  32. M.H. Mahyuddin, T. Tanaka, A. Staykov, Y. Shiota, K. Yoshizawa. Inorg. Chem., 57, 10146 (2018). https://doi.org/10.1021/acs.inorgchem.8b01329
  33. P. Han, Z. Zhang, Z. Chen, J. Lin, S. Wan, Y. Wang, S. Wang. Catalysts., 11, 751 (2021). https://doi.org/10.3390/catal11060751
  34. Electronic source. Available at: https://numpy.org/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru