Structure of copper centers in zeolite-mordenite at the activation stage according to XAFS and computer modelling data
Sukharina G. B.
1, Gladchenko-Djevelekis Ya. N.
1, Ermakova A. M.
1, Kulaev K. D.
1, Pryadchenko V. V.
1, Ponosova E. E.
1, Babayants A.S.
1, Avakyan L. A.
1, Bugaev L. A.
11Southern Federal University, Rostov-on-Don, Russia
Email: gbsukharina@sfedu.ru, ygl@sfedu.ru, aleker@sfedu.ru, kulaev@sfedu.ru, vvpryadchenko@sfedu.ru, ponosova@sfedu.ru, babaiants@sfedu.ru, laavakyan@sfedu.ru, bugaev@sfedu.ru
The results of the investigation on the local structure of copper centers in mordenite-type zeolites obtained by solid-phase ion exchange were presented. The location of probable models of copper centers in the mordenite-type zeolite framework for the most significant stage of the catalytic cycle, oxygen activation, was established and the features of 3D-models of the copper's near environment at the studied stage of the catalytic cycle were determined using a complex technique combining computer modelling with machine learning elements and X-ray absorption spectroscopy XAFS. Keywords: zeolites, copper centers, oxygen activation, XAFS, computer modelling, DFT.
- E.M.C. Alayon, M. Nachtegaal, A. Bodi, M. Ranocchiari, J.A. van Bokhoven. Phys. Chem. Chem. Phys., 17, 7681 (2015). https://doi.org/10.1039/C4CP03226H
- E.M.C. Alayon, M. Nachtegaal, E. Kleymenov, J.A. van Bokhoven. Microporous Mesoporous Mater., 166, 131 (2013). https://doi.org/10.1016/j.micromeso.2012.04.054
- Y. Li, L. Li, J. Yu. Chem., 3, 928 (2017). https://doi.org/10.1016/j.chempr.2017.10.009
- Y. Li, J. Yu. Nat. Rev. Mater., 6, 1156 (2021). https://doi.org/10.1038/s41578-021-00347-3
- M. Moliner, C. Martinez, A. Corma. Chem. Mater., 26, 246 (2014). https://doi.org/10.1021/cm4015095
- N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis. Chem. Soc. Rev., 44, 7128 (2015). https://doi.org/10.1039/C5CS00292C
- T. Bein, S. Mintova. Adv. Applications Zeolites, 263 (2005). https://doi.org/10.1016/S0167-2991(05)80015-1
- S. Mintova, M. Jaber, V. Valtchev. Chem. Soc. Rev., 44, 7207 (2015). https://doi.org/10.1039/C5CS00210A
- E.T.C. Vogt, B.M. Weckhuysen. Chem. Soc. Rev., 44, 7342 (2015). https://doi.org/10.1039/C5CS00376H
- M. Senila, O. Cadar. Heliyon, 10, e25303 (2024). https://doi.org/10.1016/j.heliyon.2024.e25303
- W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang. Chem. Soc. Rev., 48, 3193 (2019). https://doi.org/10.1039/C8CS00502H
- X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen. Chem. Rev., 120, 7984 (2020). https://doi.org/10.1021/acs.chemrev.9b00723
- Q. Zhang, J. Yu, A. Corma. Adv. Mater., 32, (2020). https://doi.org/10.1002/adma.202002927
- M. Saunois, A.R. Stavert, B. Poulter, P. Bousquet, J.G. Canadell, R.B. Jackson, P.A. Raymond, E.J. Dlugokencky, S. Houweling, P.K. Patra, P. Ciais, V.K. Arora, D. Bastviken, P. Bergamaschi, D.R. Blake, G. Brailsford, L. Bruhwiler, K.M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P.M. Crill, K. Covey, C.L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M.I. Hegglin, L. Hoglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K.M. Jensen, F. Joos, T. Kleinen, P.B. Krummel, R.L. Langenfelds, G.G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K.C. McDonald, J. McNorton, P.A. Miller, J.R. Melton, I. Morino, J. Muller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R.J. Parker, C. Peng, S. Peng, G.P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W.J. Riley, J.A. Rosentreter, A. Segers, I.J. Simpson, H. Shi, S.J. Smith, L.P. Steele, B.F. Thornton, H. Tian, Y. Tohjima, F.N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T.S. Weber, M. van Weele, G.R. van der Werf, R.F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang. Earth Syst. Sci. Data, 12, 1561 (2020). https://doi.org/10.5194/essd-12-1561-2020
- J.E. Rorrer, G.T. Beckham, Y. Roman-Leshkov. JACS Au. 1, 8--12 (2021). https://doi.org/10.1021/jacsau.0c00041
- Y. Gao, J. Jiang, Y. Meng, F. Yan, A. Aihemaiti. Energy Convers. Manag., 171, 133 (2018). https://doi.org/10.1016/j.enconman.2018.05.083
- S. Prodinger, K. Kvande, B. Arstad, E. Borfecchia, P. Beato, S. Svelle. ACS Catal., 12, 2166 (2022). https://doi.org/10.1021/acscatal.1c05091
- N.J. Gunsalus, A. Koppaka, S.H. Park, S.M. Bischof, B.G. Hashiguchi, R.A. Periana. Chem. Rev., 117, 8521 (2017). https://doi.org/10.1021/acs.chemrev.6b00739
- M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt. J. Am. Chem. Soc., 127, 1394 (2005). https://doi.org/10.1021/ja047158u
- Ya.N. Gladchenko-Djevelekis, G.B. Sukharina, A.M. Ermakova, K.D. Kulaev, V.V. Pryadchenko, E.E. Ponosova, E.I. Shemetova, L.A. Avakyan, L.A. Bugaev. Tech. Phys. 69, 586 (2024). https://doi.org/10.61011/JTF.2024.04.57533.287-23
- M.A. Newton, A.J. Knorpp, V.L. Sushkevich, D. Palagin, J.A. van Bokhoven. Chem. Soc. Rev., 49, 1449 (2020). https://doi.org/10.1039/C7CS00709D
- A.J. Knorpp, M.A. Newton, S.C.M. Mizuno, J. Zhu, H. Mebrate, A.B. Pinar, J.A. van Bokhoven. Chem. Commun., 55, 11794 (2019). https://doi.org/10.1039/C9CC05659A
- V.V. Srabionyan, G.B. Sukharina, T.I. Kurzina, V.A. Durymanov, A.M. Ermakova, L.A. Avakyan, E.M.C. Alayon, M. Nachtegaal, J.A. van Bokhoven, L.A. Bugaev. J. Phys. Chem. C, 125, 25867 (2021). https://doi.org/10.1021/acs.jpcc.1c08240
- V.V. Pryadchenko, G.B. Sukharina, A.M. Ermakova, S.V. Bazovaya, T.I. Kurzina, V.A. Durymanov, V.A. Tolstopyatenko, V.V. Srabionyan, L.A. Avakyan, L.A. Bugaev. Tech. Phys., 66, 1018 (2021). https://doi.org/10.1134/S1063784221070124
- V.V. Srabionyan, G.B. Sukharina, S.Y. Kaptelinin, V.A. Durymanov, A.M. Ermakova, T.I. Kurzina, L.A. Avakyan, L.A. Bugaev. Phys. Solid State, 62, 1222 (2020). https://doi.org/10.1134/S1063783420070252
- N. Argaman, G. Makov. Am. J. Phys., 68, 69 (2000). https://doi.org/10.1119/1.19375
- S.E. Bozbag, E.M.C. Alayon, J. Pech..ek, M. Nachtegaal, M. Ranocchiari, J.A. van Bokhoven. Catal. Sci. Technol., 6, 5011 (2016). https://doi.org/10.1039/C6CY00041J
- B. Ravel, M. Newville. J. Synchrotron Radiat., 12, 537 (2005). https://doi.org/10.1107/S0909049505012719
- Y. Joly. Phys. Rev. B, 63, 125120 (2001). https://doi.org/10.1103/PhysRevB.63.125120
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys. Condens. Matter., 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- Electronic source. Available at: https://pytorch.org/
- M.H. Mahyuddin, T. Tanaka, A. Staykov, Y. Shiota, K. Yoshizawa. Inorg. Chem., 57, 10146 (2018). https://doi.org/10.1021/acs.inorgchem.8b01329
- P. Han, Z. Zhang, Z. Chen, J. Lin, S. Wan, Y. Wang, S. Wang. Catalysts., 11, 751 (2021). https://doi.org/10.3390/catal11060751
- Electronic source. Available at: https://numpy.org/
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.