Thermally initiated modification of the structure and magnetic properties of Ta/Ni and FeMn/Ni film nanocomposites
Vas’kovskiy V. O.1,2, Bykova A. A. 1, Gorkovenko A. N. 1, Kulesh N. A. 1, Lepalovskij V. N. 1, Kudyukov E. V. 1, Selezneva N. V. 1
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: Vladimir.Vaskovskiy@urfu.ru, anastasia.bykova@urfu.ru, a.n.gorkovenko@urfu.ru, vladimir.lepalovsky@urfu.ru, e.v.kudyukov@urfu.ru, N.V.Selezneva@urfu.ru

PDF
The effect of thermomagnetic treatment on the structure and magnetic properties of films containing Ni layers in the vicinity of Ta layers or antiferromagnetic FeMn layer has been studied. It is shown that annealing at temperatures up to 300 oC significantly affects the nature of induced anisotropy in the ferromagnetic layer, which leads to variations in the anisotropy of the coercive force in Ta/Ni films or the anisotropy of the exchange bias field in FeMn/Ni films. Annealing at a higher temperature causes uneven interlayer diffusion of elements, which, according to profile X-ray fluorescence analysis, extends to a depth of at least 5 nm. This is accompanied by a sharp increase in the coercive force for Ta/Ni films and an increase in the resulting magnetization for FeMn/Ni films while maintaining the effect of exchange bias in them. Keywords: annealing, exchange bias, diffusion, anisotropy, antiferromagnetic.
  1. D. Sander, S.O. Valenzuela, D. Makarov, C.H. Marrows, E.E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro. J. Phys. D: Appl. Phys., 50, 36001 (2017). DOI: 10.1088/1361-6463/aa81a1
  2. B. Lim, M. Mahfoud, P.T. Das, T. Jeon, C. Jeon, M. Kim, T.-K. Nguyen, Q.-H. Tran, F. Terki, C.G. Kim. APL Mater., 10, 051108 (2022). DOI: 10.1063/5.0087311
  3. I. v Zutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys., 76, 323 (2004). DOI: 10.1103/RevModPhys.76.323
  4. G. Khandi. Elektronnye komponenty, 3, 74 (2018) (in Russian)
  5. K. O'Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322 (8), 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011
  6. K. O'Grady, J. Sinclair, K. Elphick, R. Carpenter, G. Vallejo-Fernandez, M.I.J. Probert, A. Hirohata. J. Appl. Phys., 128 (4), 040901 (2020). DOI: 10.1063/5.0006077
  7. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai, D. Zhu, W. Zhao. Fundamental Research, 2 (4), 522 (2022). DOI: 10.1016/j.fmre.2022.03.016
  8. V.O. Vas'kovskiy, V.N. Lepalovskij, A.N. Gorkovenko, N.A. Kulesh, P.A. Savin, A.V. Svalov, E.A. Stepanova, N.N. Shchegoleva, A.A. Yuvchenko. Tech. Phys., 60 (1), 116 (2015). DOI: 10.1134/S1063784215010260
  9. G.V. Anderson, M. Pakala, Y. Huai. IEEE Trans. Magn., 36, 2605 (2000). DOI: 10.1109/20.908530
  10. M. Takiguchi, S. Ishii, E. Makino, A. Okabe. J. Appl. Phys., 87 (5), 2469 (2000). DOI: 10.1063/1.372204
  11. S.H. Jang, T. Kang, H.J. Kim, K.Y. Kim. J. Appl. Phys. Lett., 81 (1), 105 (2002). DOI: 10.1063/1.1491605
  12. R.-T. Huang, F.-R. Chen, J.-J. Kai, W. Kai, I.-F. Tsu, S. Mao. J. Magn. Magn. Mater., 260 (1-2), 28 (2003). DOI: 10.1016/S0304-8853(01)00458-9
  13. Y.K. Kim, G.-H. Park, S.-R. Lee, S.-H. Min, J.Y. Won, S.A. Song. J. Appl. Phys., 93 (10), 7924 (2003). DOI: 10.1063/1.1540158
  14. J.S. Kim, S.-R. Lee. J. Appl. Phys., 99, 08R704 (2006). DOI: 10.1063/1.2172200
  15. S.W. Kim, J.K. Kim, J.H. Kim, B.K. Kim, J.Y. Lee, S.S. Lee, D.G. Hwang, J.R. Rhee. J. Appl. Phys., 93 (10), 6602 (2003). DOI: 10.1063/1.1557238
  16. P. Savin, J. Guzman, V. Lepalovskij, A. Svalov, G. Kurlyandskaya, A. Asenjo, V. Vas'kovskiy, M. Vazquez. J. Magn. Magn. Mater., 402, 49 (2016). DOI: 10.1016/j.jmmm.2015.11.027
  17. K.G. Balymov, E.V. Kudyukov, V.N. Lepalovsky, N.A. Kulesh, V.O. Vaskovsky. Defektoskopiya 7, 46 (2017) (in Russian)
  18. K.-Y. Kim, H.-C. Choi, C.-Y. You, J.-S. Lee. J. Appl. Phys., 105, 07D715 (2009). DOI: 10.1063/1.3068628
  19. N.M. Lyadov, V.V. Bazarov, I.R. Vakhitov, A.I. Gumarov, Sh.Z. Ibragimov, D.M. Kuzina, I.A. Faizrakhmanov, R.I. Khaibullin, V.A. Shustov. Phys. Solid State, 63 (10), 1723 (2021). DOI: 10.1134/S1063783421100231
  20. K.-C. Chen, Y.H. Wu, K.-M. Wu, J.C. Wu, L. Horng. J. Appl. Phys., 101 (9), 09E516 (2007). DOI: 10.1063/1.2712319
  21. P. Scherrer. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 2, 98 (1918)
  22. J. Rodri guez-Carvajal. Phys. B: Condens. Matter., 192 (1-2), 55 (1993). DOI: 10.1016/0921-4526(93)90108-I
  23. N.P. Yurkevich, P.G. Kuzhir, R.L. Tofpenets. Electronno-microscopicheskoye issledovanie structuri kristallov (BNTU, Minsk, 2004)
  24. P.A. Savin, O.A. Adanakova, V.N. Lepalovskij, E.V. Kudyukov, V.O. Vas'kovskiy. Bull. RAS: Phys., 87 (4), 433 (2023). DOI: 10.3103/S1062873822701398
  25. A.G. Lesnik. Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976)
  26. J.M.D. Coey. Magnetism and Magnetic Materials (Cambridge University Press., NY., 2010). DOI: 10.1017/CBO9780511845000
  27. M. Ekholm, I.A. Abrikosov. Phys. Rev. B., 84, 104423 (2011). DOI: 10.1103/PhysRevB.84.104423
  28. V.O. Vaskovsky, A.A. Bykova, A.N. Gorkovenko, M.E. Moskalev, V.N. Lepalovsky. ZhETF 165 (5), 655 (2024) (in Russian). DOI: 10.31857/S0044451024050067
  29. A.N. Gorkovenko, N.A. Kulesh, P.A. Panchenko, V.O. Vaskovskiy. Inorg. Mater. Appl. Res., 11 (1), 172 (2020). DOI: 10.1134/S2075113320010141

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru