Thermally initiated modification of the structure and magnetic properties of Ta/Ni and FeMn/Ni film nanocomposites
Vas’kovskiy V. O.1,2, Bykova A. A. 1, Gorkovenko A. N. 1, Kulesh N. A. 1, Lepalovskij V. N. 1, Kudyukov E. V. 1, Selezneva N. V. 1
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: Vladimir.Vaskovskiy@urfu.ru, anastasia.bykova@urfu.ru, a.n.gorkovenko@urfu.ru, vladimir.lepalovsky@urfu.ru, e.v.kudyukov@urfu.ru, N.V.Selezneva@urfu.ru
The effect of thermomagnetic treatment on the structure and magnetic properties of films containing Ni layers in the vicinity of Ta layers or antiferromagnetic FeMn layer has been studied. It is shown that annealing at temperatures up to 300 oC significantly affects the nature of induced anisotropy in the ferromagnetic layer, which leads to variations in the anisotropy of the coercive force in Ta/Ni films or the anisotropy of the exchange bias field in FeMn/Ni films. Annealing at a higher temperature causes uneven interlayer diffusion of elements, which, according to profile X-ray fluorescence analysis, extends to a depth of at least 5 nm. This is accompanied by a sharp increase in the coercive force for Ta/Ni films and an increase in the resulting magnetization for FeMn/Ni films while maintaining the effect of exchange bias in them. Keywords: annealing, exchange bias, diffusion, anisotropy, antiferromagnetic.
- D. Sander, S.O. Valenzuela, D. Makarov, C.H. Marrows, E.E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro. J. Phys. D: Appl. Phys., 50, 36001 (2017). DOI: 10.1088/1361-6463/aa81a1
- B. Lim, M. Mahfoud, P.T. Das, T. Jeon, C. Jeon, M. Kim, T.-K. Nguyen, Q.-H. Tran, F. Terki, C.G. Kim. APL Mater., 10, 051108 (2022). DOI: 10.1063/5.0087311
- I. v Zutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys., 76, 323 (2004). DOI: 10.1103/RevModPhys.76.323
- G. Khandi. Elektronnye komponenty, 3, 74 (2018) (in Russian)
- K. O'Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322 (8), 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011
- K. O'Grady, J. Sinclair, K. Elphick, R. Carpenter, G. Vallejo-Fernandez, M.I.J. Probert, A. Hirohata. J. Appl. Phys., 128 (4), 040901 (2020). DOI: 10.1063/5.0006077
- D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai, D. Zhu, W. Zhao. Fundamental Research, 2 (4), 522 (2022). DOI: 10.1016/j.fmre.2022.03.016
- V.O. Vas'kovskiy, V.N. Lepalovskij, A.N. Gorkovenko, N.A. Kulesh, P.A. Savin, A.V. Svalov, E.A. Stepanova, N.N. Shchegoleva, A.A. Yuvchenko. Tech. Phys., 60 (1), 116 (2015). DOI: 10.1134/S1063784215010260
- G.V. Anderson, M. Pakala, Y. Huai. IEEE Trans. Magn., 36, 2605 (2000). DOI: 10.1109/20.908530
- M. Takiguchi, S. Ishii, E. Makino, A. Okabe. J. Appl. Phys., 87 (5), 2469 (2000). DOI: 10.1063/1.372204
- S.H. Jang, T. Kang, H.J. Kim, K.Y. Kim. J. Appl. Phys. Lett., 81 (1), 105 (2002). DOI: 10.1063/1.1491605
- R.-T. Huang, F.-R. Chen, J.-J. Kai, W. Kai, I.-F. Tsu, S. Mao. J. Magn. Magn. Mater., 260 (1-2), 28 (2003). DOI: 10.1016/S0304-8853(01)00458-9
- Y.K. Kim, G.-H. Park, S.-R. Lee, S.-H. Min, J.Y. Won, S.A. Song. J. Appl. Phys., 93 (10), 7924 (2003). DOI: 10.1063/1.1540158
- J.S. Kim, S.-R. Lee. J. Appl. Phys., 99, 08R704 (2006). DOI: 10.1063/1.2172200
- S.W. Kim, J.K. Kim, J.H. Kim, B.K. Kim, J.Y. Lee, S.S. Lee, D.G. Hwang, J.R. Rhee. J. Appl. Phys., 93 (10), 6602 (2003). DOI: 10.1063/1.1557238
- P. Savin, J. Guzman, V. Lepalovskij, A. Svalov, G. Kurlyandskaya, A. Asenjo, V. Vas'kovskiy, M. Vazquez. J. Magn. Magn. Mater., 402, 49 (2016). DOI: 10.1016/j.jmmm.2015.11.027
- K.G. Balymov, E.V. Kudyukov, V.N. Lepalovsky, N.A. Kulesh, V.O. Vaskovsky. Defektoskopiya 7, 46 (2017) (in Russian)
- K.-Y. Kim, H.-C. Choi, C.-Y. You, J.-S. Lee. J. Appl. Phys., 105, 07D715 (2009). DOI: 10.1063/1.3068628
- N.M. Lyadov, V.V. Bazarov, I.R. Vakhitov, A.I. Gumarov, Sh.Z. Ibragimov, D.M. Kuzina, I.A. Faizrakhmanov, R.I. Khaibullin, V.A. Shustov. Phys. Solid State, 63 (10), 1723 (2021). DOI: 10.1134/S1063783421100231
- K.-C. Chen, Y.H. Wu, K.-M. Wu, J.C. Wu, L. Horng. J. Appl. Phys., 101 (9), 09E516 (2007). DOI: 10.1063/1.2712319
- P. Scherrer. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 2, 98 (1918)
- J. Rodri guez-Carvajal. Phys. B: Condens. Matter., 192 (1-2), 55 (1993). DOI: 10.1016/0921-4526(93)90108-I
- N.P. Yurkevich, P.G. Kuzhir, R.L. Tofpenets. Electronno-microscopicheskoye issledovanie structuri kristallov (BNTU, Minsk, 2004)
- P.A. Savin, O.A. Adanakova, V.N. Lepalovskij, E.V. Kudyukov, V.O. Vas'kovskiy. Bull. RAS: Phys., 87 (4), 433 (2023). DOI: 10.3103/S1062873822701398
- A.G. Lesnik. Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976)
- J.M.D. Coey. Magnetism and Magnetic Materials (Cambridge University Press., NY., 2010). DOI: 10.1017/CBO9780511845000
- M. Ekholm, I.A. Abrikosov. Phys. Rev. B., 84, 104423 (2011). DOI: 10.1103/PhysRevB.84.104423
- V.O. Vaskovsky, A.A. Bykova, A.N. Gorkovenko, M.E. Moskalev, V.N. Lepalovsky. ZhETF 165 (5), 655 (2024) (in Russian). DOI: 10.31857/S0044451024050067
- A.N. Gorkovenko, N.A. Kulesh, P.A. Panchenko, V.O. Vaskovskiy. Inorg. Mater. Appl. Res., 11 (1), 172 (2020). DOI: 10.1134/S2075113320010141
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.