Methodology for studying polarization noise in ferroelectric materials and its application to barium titanate
Baryshnikov S. V.1, Milinsky A. Yu.1, Stukova E. V.2
1Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia
2Amur State University, Blagoveshchensk, Russia
Email: svbar2003@list.ru, lenast@bk.ru

PDF
The paper proposes a method for studying polarization noise in ferroelectrics and tests it using a single crystal and ceramics of barium titanate. Polarization noise is detected, the spectral density of which is inversely proportional to the frequency of the measuring field. Polarization noise is observed only in the ferroelectric phase and correlates with the magnitude of the pyroelectric current, which indicates its connection with spontaneous polarization.. Keywords: polarization noise, ferroelectric, spontaneous polarization, phase transition, pyroelectric current.
  1. M.E. Lines, A.M. Glass. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)
  2. K.M. Rabe, C.H. Ahn, J.-M. Triscone. Physics of Ferroelectrics. A Modern Perspective (Springer, Berlin, 2007)
  3. S.P. Yudin, L.M. Blinov, N.N. Petukhova, S.P. Palto. Jetp. Lett., 70 (9), 633 (1999) DOI: 10.1134/1.568227
  4. A. Milinskii, S. Baryshnikov, V. Parfenov, S. Kozlova, N.H. Thuong. Transactions on Electrical and Electronic Materials, 19 (3), 201 (2018). DOI: 10.1007/s42341-018-0032-x
  5. L. Godefroy. J. Phys. Colloques., 33, C2-44 (1972). DOI: 10.1051/jphyscol:1972210
  6. P.S. Bednyakov, I.V. Shnaidshtein, B.A. Strukov. Phys. Solid State, 53, 350 (2011). DOI: 10.1134/S106378341102003X
  7. C.D. Tan, C. Flannigan, J. Gardner, F.D. Morrison, E.K.H. Salje, J.F. Scott. Phys. Rev. Mater., 3 (3), 034402 (2019). DOI: 10.1103/PhysRevMaterials.3.034402
  8. X. Zhang, C. Mellinger, E.V. Colla, M.B. Weissman, D.D. Viehland. Phys. Rev. B, 95 (14), 144203 (2017). DOI: 10.1103/PhysRevB.95.144203
  9. S.A. Gridnev, A.N. Tsotsorin, A.V. Kalgin. Phys. Stat, Sol. (b), 245 (1), 224 (2008)
  10. I. Muv seviv c, A. Kityk, M. v Skarabot, R. Blinc. Phys. Rev. Lett., 79 (6), 1062 (1997). DOI: 10.1103/PhysRevLett.79.1062
  11. S. Luo, Y. He, B. Cai, X. Gong, G. Liang. 2023 7th IEEE Electron Devices Technology \& Manufacturing Conference (EDTM), Seoul, Republic of Korea, 1 (2023). DOI: 10.1109/EDTM55494.2023.10103119
  12. R. Kubo. J. Phys. Soc. Jpn, 12, 570 (1957). DOI: 10.1143/JPSJ.12.570
  13. N.E. Israeloff. Phys. Rev. B, 53, R11913(R) (1996). DOI: 10.1103/PhysRevB.53.R11913
  14. J.B. Johnson. Phys. Rev., 32, 97 (1928). DOI: 10.1103/PhysRev.32.97
  15. H. Nyquist. Phys. Rev., 32, 110 (1928). DOI: 10.1103/PhysRev.32.110
  16. A.M. Glass. J. Appl. Phys., 40, 4699 (1969). DOI: 10.1063/1.1657277
  17. S.V. Baryshnikov, A.Y. Milinsky, E.V. Stukova. Glass and Ceramics, 81 (3), 152 (2024). DOI: 10.1007/s10717-024-00674-1

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru