Определение второго вириального коэффициента для полипропилена в органических растворителях методами компьютерного моделирования
Егоров В.И.
1, Максимова О.Г.
11ФГБОУ высшего образования "Череповецкий государственный университет", Череповец, Россия
Email: rvladegorov@rambler.ru
Поступила в редакцию: 30 апреля 2024 г.
В окончательной редакции: 28 октября 2024 г.
Принята к печати: 30 октября 2024 г.
Выставление онлайн: 19 января 2025 г.
Представлены два новых метода расчета второго вириального коэффициента для разбавленных растворов полимера. Первый метод использует результаты молекулярно-динамического моделирования, а второй - гибридный подход, сочетающий Монте-Карло-моделирование и численное решение интегрального уравнения Орнштейна-Цернике. Показано, что оба метода дают правильную сравнительную характеристику вторых вириальных коэффициентов для растворов полипропилена с органическими растворителями. При этом метод на основе молекулярной динамики имеет преимущество в точности, а метод на основе гибридного подхода - в производительности. Ключевые слова: полимерные растворы, метод молекулярной динамики, метод Монте-Карло, уравнение Орнштейна-Цернике.
- T. Magnussen, P. Rasmussen, A. Fredenslund. Ind. Eng. Chem. Proc. Des. Dev. 20, 2, 331 (1981). https://doi.org/10.1021/i200013a024
- Y. Dong, Y. Guo, R. Zhu, J. Zhang, Z. Lei. Ind. Eng. Chem. Res. 59, 21, 10172 (2020). https://doi.org/10.1021/acs.iecr.0c00113
- A.V. Maksimov, M. Molina, O.G. Maksimova, G.Y. Gor. ACS Appl. Polymer Mater. 5, 3, 2026 (2023). https://doi.org/10.1021/acsapm.2c02074
- G. Gor, A.V. Maksimov, O. Maksimova, M. Molina. Electrochem. Soc. Meet. Abstr. 244, 3, 461 (2023). https://doi.org/10.1149/MA2023-023461mtgabs
- G.Y. Gor, J. Cannarella, C.Z. Leng, A. Vishnyakov, C.B. Arnold. J. Power Sources 294, 167 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.028
- K. Koga. J. Phys. Chem. B 117, 41, 12619 (2013). https://doi.org/10.1021/jp4085298
- A.A. Chialvo, O.D. Crisalle. J. Chem. Phys. 150, 12, 124503 (2019). https://doi.org/10.1063/1.5047525
- P.G. Khalatur, A.R. Khokhlov. Molecular Phys. 93, 4, 555 (1998). https://doi.org/10.1080/002689798168899
- В.И. Егоров, О.Г. Максимова. Изв. РАН, сер. физ. 87, 9, 1316 (2023). [V.I. Egorov, O.G. Maksimova. Bull. Russ. Acad. Sci.: Phys. 87, 9, 1349 (2023). https://doi.org/10.3103/S1062873823703288]
- A. Brodka, T.W. Zerda. J. Chem. Phys. 104, 16, 6313 (1996). https://doi.org/10.1063/1.471271
- Y.M. Munoz-Munoz, G. Guevara-Carrion, M. Llano-Restrepo, J. Vrabec. Fluid Phase Equilibria 404, 150 (2015)
- R.D. Mountain. J. Phys. Chem. C 117, 8, 3923 (2013). https://doi.org/10.1021/jp3083562
- S. Eckelsbach, T. Janzen, A. Koster, S. Miroshnichenko, Y.M. Munoz-Munoz, J. Vrabec. In: High Performance Computing in Science and Engineering '14 / Eds W. Nagel, D. Kroner, M. Resch. P. 645. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-10810-0_42
- E.E. Fileti, S. Canuto. J. Computat. Methods. Sci. Eng. 4, 4, 559 (2004). https://doi.org/10.3233/JCM-2004-4403
- M. Martin, J.I. Siepmann. J. Phys. Chem. B 103, 21, 4508 (1999). https://doi.org/10.1021/jp984742e