Study of superconducting transmission lines based on NbTiN/Al and pumping of Nb/AlN/NbN SIS junctions in the frequency range above 1 THz
Kinev N. V.
1, Chekushkin A. M.
1, Khan F. V.
1,2,3, Rudakov K.I.
1,3, Kotova N. N.
1,2, Koshelets V. P.
11Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Astro Space Center of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Email: nickolay@hitech.cplire.ru, chekushkin@hitech.cplire.ru, khanfv@hitech.cplire.ru, rudakov@asc.rssi.ru, kotova_nn@hitech.cplire.ru, valery@hitech.cplire.ru
Superconducting transmission lines based on NbTiN/Al were studied as rf lines for operation at frequencies up to 1.1 THz. Circuits for studying damping in thin-film structures consisting a receiving slot THz antenna, a set of NbTiN/Al microstrip transmission lines, and two THz detectors based on the "superconductor-insulator-superconductor" Nb/AlN/NbN tunnel junction matched to the line were numerically simulated and fabricated. An experiment was carried out to register an external source signal (backward wave oscillator) at a frequency of about 1.1 THz, demonstrating the successful operation of the developed NbTiN/Al transmission lines at frequencies above 1 THz, where traditional Nb-based transmission lines are not applicable. The analysis of the heating effect is made when the detector is affected by external rf signal, which leads to a powerful pumping of the tunnel junction. Keywords: terahertz detectors, SIS junctions, thin films, thermal effect, superconducting gap.
- S.L. Dexheimer. Terahertz Spectroscopy: Principles and Applications. CRC Press, N.Y. (2008). 360 p
- D.F. Plusquellic, K. Siegrist, E.J. Heilweil, O. Esenturk. Chem. Phys. Chem. 8, 17, 2412. (2007)
- A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham. Mater. Today 11, 3, 18 (2008)
- J.R. Tucker, M.J. Feldman. Rev. Mod. Phys. 57, 4, 1055 (1985)
- D.C. Mattis, J. Bardeen. Phys. Rev. 111, 2, 412 (1958)
- J.W. Kooi, J.A. Stern, G. Chattopadhyay, H.G. LeDuc, B. Bumble, J. Zmuidzinas. Int. J. Infrared Millimeter Waves 19, 3, 373 (1998)
- B.D. Jackson, N.N. Iosad, G. Lange, A.M. Baryshev, W M. Laauwen, J.R. Gao, T.M. Klapwijk. IEEE Trans. Appl. Supercond. 11, 1, 653 (2001)
- N.V. Kinev, A.M. Chekushkin, F.V. Khan, K.I. Rudakov. Radiotekhnika i elektronika, 68, 9, 858 (2023). (in Russian)
- A. Traini, B.K. Tan, J.D. Garrett, A. Khudchenko, R. Hesper, A.M. Baryshev, P.N. Dmitriev, V.P. Koshelets, G. Yassin. IEEE Trans. THz Sci. Technol. 10, 6, 721 (2020)
- N.V. Kinev, K.I. Rudakov, L.V. Filippenko, A.M. Baryshev, V.P. Koshelets. Sensors 20, 24, 7276 (2020)
- A. Khudchenko, A.M. Baryshev, K. Rudakov, V. Koshelets, P. Dmitriev, R. Hesper, L. Jong. IEEE Trans. THz Sci. Technol. 6, 1, 127 (2016)
- N.V. Kinev, A.M. Chekushkin, F.V. Khan, V.P. Koshelets. In Proc.: 2023 Radiation and Scattering of Electromagnetic Waves (2023). P. 128
- P.N. Dmitriev, I.L. Lapitskaya, L.V. Filippenko, A.B. Ermakov, S.V. Shitov, G.V. Prokopenko, S.A. Kovtonyuk, V.P. Koshelets. IEEE Trans. Appl. Supercond. 13, 2, 107 (2003)
- A.M. Chekushkin, L.V. Filippenko, M.Yu. Fominsky, V.P. Koshelets. FTT 64, 10, 1399 (2022). (in Russian)
- C.C. Grimes, S. Shapiro. Phys. Rev. J. Archive 169, 2, 397 (1968)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.