Physics of the Solid State
Volumes and Issues
Galvanomagnetic properties of GaMnAs layers obtained by ion implantation: the role of Mn+ ion energy
Danilov Yu. A.1, Bykov V. A.1, Vikhrova O. V.1, Zdoroveyshchev D. A.1, Kalentyeva I. L.1, Krykov R. N.1, Parafin A. E. 2, Agafonov Yu. A.3, Zinenko V. I.3, Batalov R. I.4, Valeev V. F.4, Nuzhdin V. I.4
1Lobachevsky State University, Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
3Institute of Problems of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences, Chernogolovka, Russia
4Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
Email: vikhrova@nifti.unn.ru, Danilov.Yu46@yandex.ru

PDF
The galvanomagnetic properties of GaMnAs layers obtained by implantation of Mn+ ions and subsequent pulsed laser annealing were studied. The optimal value of the KrF excimer laser pulse energy density (~300 mJ/cm2) for the electrical activation of implanted Mn atoms has been established. It has been shown that layers formed with a dose of (3-5)·1016 cm-2 are ferromagnetic after laser annealing, and the implantation energy has virtually no effect on the Curie temperature. It was found that the hysteresis loop width in the anomalous Hall effect strongly depends on the implantation energy: coercive field decreases with decreasing ion energy from 200 to 40 keV. Keywords: gallium arsenide, Mn ion implantation, laser annealing, anomalous Hall effect, ferromagnetism.
  1. T. Dietl, H. Ohno. Rev. Mod. Phys. 86, 1, 187 (2014)
  2. P.J. Wellmann, J.M. Garcia, J.-L. Feng, P.M. Petroff. Appl. Phys. Lett. 73, 22, 3291 (1998)
  3. M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro; M.R. Pillai; M.J. Aziz, M.C. Ridgway. Appl. Phys. Lett. 82, 8, 1251 (2003)
  4. S. Zhou. J. Phys. D 48, 26, 263001 (2015)
  5. Yu.A. Danilov, Yu.A. Agafonov, V.I. Bachurin, V.A. Bykov, O.V. Vikhrova, V.I. Zinenko, I.L. Kalentyeva, A.V. Kudrin, A.V. Nezhdanov, A.E. Parafin, S.G. Simakin, P.A. Yunin, A.A. Yakovleva. Phys. Solid State 65, 12, 2138 (2023)
  6. K.Y. Wang, K.W. Edmonds, R.P. Campion, L.X. Zhao, C.T. Foxon, B.L. Gallagher. Phys. Rev. B 72, 8, 085201 (2005)
  7. A.V. Kudrin, O.V. Vikhrova, Yu.A. Danilov. Tech. Phys. Lett. 36, 6, 511 (2010)
  8. J.F. Ziegler, J.P. Biersack, U. Littmark. The Stopping and Range of Ions in Solids. Pergamon Press, N.Y.(1985)
  9. W.L. Lim, X. Liu, K. Dziatkowski, Z. Ge, S. Shen, J.K. Furdyna, M. Dobrowolska. J. Appl. Phys. 99, 8, 08D505 (2006)
  10. J. Daeubler, S. Schwaiger, M. Glunk, M. Tabor, W. Schoch, R. Sauer, W. Limmer. Physica E 40, 6, 1876 (2008)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru