Anomalous mechanical behavior of ultrafine-grained Al-Mg-Zr alloy at low temperature
Sadykov D. I.
1,2, Murashkin M. Yu.
3, Kirilenko D. A.
1, Levin A. A.
1, Lihachev A. I.
1, Orlova T. S.
11Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Ufa University of Science and Technology, Ufa, Russia
Email: dinislames@mail.ru, m.murashkin.70@gmail.com, aleksandr.a.levin@mail.ioffe.ru, lihachev_alexey@bk.ru, orlova.t@mail.ioffe.ru
The effect of deformation temperature on strength and ductility of ultrafine-grained (UFG) low-alloyed Al-Mg-Zr alloy before and after special deformation-heat treatment (DHT) consisting of low-temperature short-term annealing and a small additional deformation, was investigated in the temperature range 77-293 K. UFG structure was obtained by high-pressure torsion processing. It has been established that DHT leads to a substantially enhanced ductility (7-13%) while maintaining high strength (yield stress ~300-435 MPa, ultimate tensile strength ~370-490 MPa) over the entire temperature range studied. In the post-DHT state, an anomalous character of temperature dependences of the strength and ductility in the temperature range of 243-293 K is observed for the first time, which is unusual for coarse-grained and UFG Al-based alloys. A possible explanation for such anomalous temperature dependences of strength and ductility is proposed, based on the competition between various thermally activated processes at grain boundaries with inverse temperature dependences. Keywords: Aluminum alloys, ultrafine-grained microstructure, ductility, strength, grain boundaries.
- K. Son, M.E. Kassner, T.K. Lee, J.W. Lee. Mater. Des. 224, 111336 (2022). https://doi.org/10.1016/j.matdes.2022.111336
- D.H. Park, S.W. Choi, J.H. Kim, J.M. Lee. Cryogenics 68, 44 (2015). https://doi.org/10.1016/j.cryogenics.2015.02.001
- W.S. Park, M.S. Chun, M.S. Han, M.H. Kim, J.M. Lee. Mater. Sci. Eng. A 528, 18, 5790 (2011). https://doi.org/10.1016/j.msea.2011.04.032
- K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W. Botta et all. Mater. Res. Lett. 10, 4, 163 (2022). https://doi.org/10.1080/21663831.2022.2029779
- D.C. Machado, P.C.A. Flausino, Y. Huang, P.R. Cetlin, T.G. Langdon, P.H.R. Pereira, J. Mater. Res. Technol. 24, 2850 (2023). https://doi.org/10.1016/j.jmrt.2023.03.167
- E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, J.A. Szpunar. J. Mater. Sci. 56, 3535 (2021). https://doi.org/10.1007/s10853-020-05479-5
- X.M. Mei, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, F. Chen, Z.H. Chen, T. Xu, Y.C. Wang, Y.Y. Tan. J. Mater. Sci. Technol. 125, 238 (2022). https://doi.org/10.1016/j.jmst.2022.02.029
- K. Changela, H. Krishnaswamy, R.K. Digavalli, Mater. Sci. Eng. A 760, 7 (2019). https://doi.org/10.1016/j.msea.2019.05.088
- Z. Be'zi, G. Kra'llics, M. El-Tahawy, P. Pekker, J. Gubicza. Mater. Sci. Eng. A 688, 210 (2017). https://doi.org/10.1016/j.msea.2017.01.112
- A.S. Al-Zubaydi, N. Gao, S. Wang, P.A. Reed. J. Mater. Sci. 57, 19, 8956 (2022). https://doi.org/10.1007/s10853-022-07234-4
- M. Howeyze, A.R. Eivani, H. Arabi, H.R. Jafarian. Mater. Sci. Eng. A 732, 120 (2018). https://doi.org/10.1016/j.msea.2018.06.081
- X. Li, W. Xia, J. Chen, H. Yan, Z. Li, B. Su, M. Song. Met. Mater. Int. 27, 1 (2021). https://doi.org/10.1007/s12540-020-00929-w
- Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu. Adv. Mater. 18, 17, 2280 (2006). https://doi.org/10.1002/adma.200600310
- A.M. Mavlyutov, T.A. Latynina, M.Y. Murashkin, R.Z. Valiev, T.S. Orlova. Phys. Solid State 59, 1970 (2017). https://doi.org/10.1134/S1063783417100274
- T.S. Orlova, N.V. Skiba, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, M.Y. Gutkin. Rev. Adv. Mater. Sci. 57, 2, 224 (2018). https://doi.org/10.1515/rams-2018-0068
- X. Huang, N. Hansen, N. Tsuji. Science 312, 5771, 249 (2006). https://doi.org/10.1126/science.1124268
- T.S. Orlova, D.I. Sadykov, D.A. Kirilenko, A.I. Lihachev, A.A. Levin. Mater. Sci. Eng. A 875, 145122 (2023). https://doi.org/10.1016/j.msea.2023.145122
- T.S. Orlova, A.M. Mavlyutov, D.I. Sadykov, N.A. Enikeev, M.Y. Murashkin. Metals 13, 9, 1570 (2023). https://doi.org/10.3390/met13091570
- D. Zhemchuzhnikova, R. Kaibyshev. Adv. Eng. Mater. 17, 12, 1804 (2015). https://doi.org/10.1002/adem.201500138
- D. Zhemchuzhnikova, S. Malopheyev, S. Mironov, R. Kaibyshev. Mater. Sci. Eng. A 598, 387 (2014). https://doi.org/10.1016/j.msea.2014.01.060
- Y. Ma, C. Liu, K. Miao, H. Wu, R. Li, X. Li, G. Fan. J. Alloys Compd. 947, 169559 (2023). https://doi.org/10.1016/j.jallcom.2023.169559
- D.C.C. Magalhaes, A.M. Kliauga, V.L. Sordi. Trans. Nonferrous Met. Soc. China 31, 3, 595 (2021). https://doi.org/10.1016/S1003-6326(21)65522-X
- D.C.C. Magalhaes, A.M. Kliauga, M.F. Hupalo, O.M. Cintho, C.A. Della Rovere, M. Ferrante, V.L. Sordi. Mater. Sci. Eng. A 768, 138485 (2019). https://doi.org/10.1016/j.msea.2019.138485
- T.S. Orlova, A.M. Mavlyutov, M.Y. Gutkin. Mater. Sci. Eng. A 802, 140588 (2021). https://doi.org/10.1016/j.msea.2020.140588
- T.S. Orlova, A.M. Mavlyutov, M.Y. Murashkin, N.A. Enikeev, A.D. Evstifeev, D.I. Sadykov, M.Y. Gutkin. Materials 15, 23, 8429 (2022). https://doi.org/10.3390/ma15238429
- T.S. Orlova, D.I. Sadykov, D.V. Danilov, M.Y. Murashkin. J. Alloys Compd. 931, 167540 (2023). https://doi.org/10.1016/j.jallcom.2022.167540
- P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang. Scr. Mater. 52, 4, 265 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.022
- T.S. Orlova, T.A. Latynina, M.Y. Murashkin, F. Chabanais, L. Rigutti, W. Lefebvre. J. Alloys Compd. 859, 157775 (2021). https://doi.org/10.1016/j.jallcom.2020.157775
- P.H.L. Souza, C.A.S. de Oliveira, J.M. do Vale Quaresma. J. Mater. Res. Technol. 7, 1, 66 (2018). https://doi.org/10.1016/j.jmrt.2017.05.006
- G.K. Williamson, R.E. Smallman III. Philos. Mag. 1, 1, 34 (1956). https://doi.org/10.1080/14786435608238074
- J. Hirth, I. Lothe. Theory of Dislocations. Atomizdat, Moscow. (1972). 600 p
- T.S. Orlova, T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev. J. Alloys. Compd. 784, 41 (2019). https://doi.org/10.1016/j.jallcom.2018.12.324
- T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, T.S. Orlova. Phil. Mag. 99, 19, 2424 (2019). https://doi.org/10.1080/14786435.2019.1631501
- K.E. Knipling, D.C. Dunand, D.N. Int. J. Mater. Res. 97, 3, 246 (2022). https://doi.org/10.1515/ijmr-2006-0042
- A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Yu. Tabachkova, W. Mufalo, V.K. Portnoy. Mater. Charact. 139, 30 (2018). https://doi.org/10.1016/j.matchar.2018.02.030
- M. Zha, H. Zhang, H. Jia, Y. Gao, S. Jin, G. Sha, R. Bj rge, R.H. Mathiesen, H.J. Roven, H. Wang, Y. Li. Int. J. Plast. 146, 103108 (2021). https://doi.org/10.1016/j.ijplas.2021.103108
- C. Chen, Y. Chen, J. Yu, M. Liu, J. Zhang. J. Alloys. Compd. 983, 173905 (2024). https://doi.org/10.1016/j.jallcom.2024.173905
- J. Xue, S. Jin, X. An, X. Liao, J. Li, G. Sha. J. Mater. Sci. Technol. 35, 5, 858 (2019). https://doi.org/10.1016/j.jmst.2018.11.017
- Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou. Scr. Mater. 159, 137 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.033
- J.E. Hatch. Aluminum: properties and physical metallurgy. 1st ed. ASM International: Metals Park, OH (1984). 424 p
- J.L. Gonzalez-Velazquez. Fractography and failure analysis. Springer International Publishing, Switzerland (2018). 165 p
- M.K. Pathak, A. Joshi, K.K.S. Mer. Trans. Indian Inst. Met. 74, 679 (2021). https://doi.org/10.1007/s12666-021-02198-6
- ASM Handbook Volume 12: Fractography. 9th ed. ASM International: Metals Park, OH. (1987). 517 p
- G. Wang, D. Song, Z. Zhou, Y. Liu, N. Liang, Y. Wu, A. Ma, J. Jiang. J. Mater. Res. Technol. 15, 2419 (2021). https://doi.org/10.1016/j.jmrt.2021.09.085
- D. Zhou, X. Zhang, H. Wang, Y. Li, B. Sun, D. Zhang. Int. J. Plast. 157, 103405 (2022). https://doi.org/10.1016/j.ijplas.2022.103405
- J. Kang, X. Liu, T. Wang. Scr. Mater. 224, 115121 (2023). https://doi.org/10.1016/j.scriptamat.2022.115121
- H. Sun, W. Zhang, Y. Xu, Q. Li, X. Zhuang, Z. Zhao. Scr. Mater. 222, 115025 (2023). https://doi.org/10.1016/j.scriptamat.2022.115025
- T. Tian, M. Zha, H.L. Jia, Z.M. Hua, P.K. Ma, H.Y. Wang. Mater. Sci. Eng. A 880, 145376 (2023). https://doi.org/10.1016/j.msea.2023.145376
- D. Bae, S.H. Kim, D.H. Kim, W.T. Kim. Acta Mater. 50, 2343 (2002). https://doi.org/10.1016/S1359-6454(02)00067-8
- X.R. Zhang, G.X. Sun, W. Zai, Y. Jiang, Z.H. Jiang, S. Han, G.L. Bi, D.Q. Fang, J.S. Lian. Mater. Sci. Eng. A 799, 140141 (2021). https://doi.org/10.1016/j.msea.2020.140141
- N.Q. Chinh, T. Csanadi, T. Gyori, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon. Mater. Sci. Eng. A 543, 117 (2012). https://doi.org/10.1016/j.msea.2012.02.056
- D. Hull, D.J. Bacon. Introduction to dislocations. 5th ed. Elsevier, Butterworth-Heinemann, Oxford. (2011). 272 p
- V.I. Vladimirov. The physical theory of plasticity and strength. Ch. I. LPI, L. (1973). 120 p. (in Russian)
- O. Renk, A. Hohenwarter, V. Maier-Kiener, R. Pippa. J. Alloys Compd. 935, 168005 (2023). https://doi.org/10.1016/j.jallcom.2022.168005
- O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan. Acta Mater. 165, 409 (2019). https://doi.org/10.1016/j.actamat.2018.12.002
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.