Efficient current-induced magnetization reversal in metallic nanostructures
Telegin A. V. 1, Bessonov V. D. 1, Lobov I. D. 1, Teplov V. S. 1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: telegin@imp.uran.ru, bessonov@imp.uran.ru, i_lobov@imp.uran.ru, teplov@imp.uran.ru

PDF
Samples of metallic thin-film nanostructures consisting of ferromagnetic (FM) and heavy metal (HM) layers were fabricated using magnetron sputtering techniques, and current-carrying structures with locally enhanced current density were formed. The energy of perpendicular magnetic anisotropy and the current density required for magnetization reversal of the structures were determined from magnetic and transport measurements. Modeling of the specific resistance and current flowing through the nanostructure layers responsible for generating spin current was performed. It was shown that all samples exhibit a magnetic response to current flow due to the Hall spin effect. The specific current-induced field parameters and the efficiency of current-induced switching were determined for the obtained nanostructures, as well as their dependence on the type of HM and the thickness of the FM layer. The results of this work are of interest for studying transport effects in multilayer structures and developing methods for controlling spin textures to create new memory and computing devices. Keywords:Magnetron sputtering, current-induced magnetization, Hall effect, spintronics, nanostuctures, spin current, Kerr microscopy.
  1. A. Fert. UFN 178, 12, 1336 (2008). (in Russian) https://doi.org/10.3367/UFNr.0178.200812f.1336
  2. Yu.K. Fetisov, A.S. Sigov, Radioelektronika. Nanosistemy. Informatsionnyie tekhnolgii 10, 3, 343 (2018). (in Russian)
  3. A.V. Ognev, A.S. Samardak. Vestn. DO RAN 4, (128). 70 (2006). (in Russian)
  4. A. Manchon, J. v Zelezny, I.M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, P. Gambardella. Rev. Mod. Phys. 91, 3, 035004 (2019). https://doi.org/10.1103/RevModPhys.91.035004
  5. V.V. Ustinov, I.A. Yasyulevich, N.G. Bebenin. Phys. Met. Metallography 124, 2, 195 (2023)
  6. A.A. Stashkevich. J. Russ. Univ. Radioelectron. 22, 6, 45 (2019)
  7. A. Fert, N. Reyren, V. Cros. Nature Rev. Mater. 2, 7, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31
  8. I. Dzyaloshinsky. Sov. Phys. JETP 5, 6, 1259 (1957); J. Phys. Chem. Solids 4, 4, 241 (1958)
  9. T. Moriya. Phys. Rev. Lett. 4, 5, 228 (1960); Phys. Rev. 120, 1, 91 (1960)
  10. A.N. Bogdanov, U.K. Rob ler. Phys. Rev. Lett. 87, 3, 037203 (2001). https://doi.org/10.1103/PhysRevLett.87.037203
  11. R.E. Camley, K.L. Livesey. Surface Sci. Rep. 78, 3, 100605 (2023). https://doi.org/10.1016/j.surfrep.2023.100605
  12. A. Fert, F.N. Van Dau. Comptes Rendus Phys. 20, 7-8, 817 (2019). https://doi.org/10.1016/j.crhy.2019.05.020
  13. A.N. Bogdanov, C. Panagopoulos. Nature Rev. Phys. 2, 9, 492 (2020). https://doi.org/10.1038/s42254-020-0203-7
  14. N. Nagaosa, Y. Tokura. Nature Nanotechnol. 8, 12, 899 (2013). https://doi.org/10.1038/nnano.2013.243
  15. K. Everschor-Sitte, J. Masell, R.M. Reeve, M. Klaui. J. Appl. Phys. 124, 24, 240901 (2018). https://doi.org/10.1063/1.5048972
  16. X. Zhang, Y. Zhou, K.M. Song, T.E. Park, J. Xia, M. Ezawa, S. Woo. J. Phys.: Condens. Matter 32, 14, 143001 (2020). https://doi.org/10.1088/1361-648X/ab5488
  17. B. Kaviraj, J. Sinha. ECS J. Solid State Sci. Technol. 11, 11, 115003 (2022). https://doi.org/10.1149/2162-8777/ac9eda
  18. J. Ding, X. Yang, T. Zhu. J. Phys. D 48, 11, 115004 (2015). https://doi.org/10.1088/0022-3727/48/11/115004
  19. F. Kammerbauer, F. Freimuth, R. Fro mter, Y. Mokrousov, M. Kla ui. J. Phys. Soc. Jpn 92, 8, 081007 (2023). https://doi.org/10.7566/JPSJ.92.081007
  20. W. Jiang, G. Chen, K. Liu, J. Zang, S.G.E. Te Velthuis, A. Hoffmann. Phys. Rep. 704, 1 (2017). https://doi.org/10.1016/j.physrep.2017.08.00
  21. Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Angstrem kerman. Nature Commun. 6, 1, 8193 (2015). https://doi.org/10.1038/ncomms9193
  22. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth. Rev. Mod. Phys. 87, 4, 1213 (2015). https://doi.org/10.1103/RevModPhys.87.1213
  23. O. Heinonen, W. Jiang, H. Somaily, S.G.E. Te Velthuis, A. Hoffmann. Phys. Rev. B 93, 9, 094407 (2016). https://doi.org/10.1103/PhysRevB.93.094407
  24. B. Paikaray, M. Kuchibhotla, A. Haldar, C. Murapaka. Nanotechnol. 34, 22, 225202 (2023). https://doi.org/10.1088/1361-6528/acbeb3
  25. A.I. Bezverkhnii, V.A. Gubanov, A.V. Sadovnikov, R.B. Morgunov. Phys. Solid State 63, 12, 2285 (2021)
  26. H. Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev. Phys. Rev. Lett. 115, 26, 267210 (2015). https://doi.org/10.1103/PhysRevLett.115.267210
  27. J. Park, T. Kim, G.W. Kim, V. Bessonov, A. Telegin, I.G. Iliushin, A.A. Pervishko, D. Yudin, A.Yu. Samardak, A.V. Ognev, J. Cho, A.S. Samardak, Y.K. Kim. Acta Materialia 241, 118383 (2022). https://doi.org/10.1016/j.actamat.2022.118383
  28. A.S. Samardak, A.G. Kolesnikov, A.V. Davydenko, M.E. Steblii, A.V. Ognev. Phys. Met. Metallogr. 123, 3, 238 (2022). https://doi.org/10.1134/S0031918X22030097
  29. B.A. Ivanov. Fizika nizkikh temperatur 45, S9, 1095 (2019). (in Russian)
  30. Y. Zhang, X. Feng, Z. Zheng, Z. Zhang, K. Lin, X. Sun, G. Wang, J. Wang, J. Wei, P. Vallobra, Y. He, Z. Wang, L. Chen, K. Zhang, Y. Xu, W. Zhao. Appl. Phys. Rev. 10, 1 (2023). https://doi.org/10.1063/5.0104618
  31. S.K. Kim, G.S.D. Beach, K.-J. Lee T. Ono, T. Rasing, H. Yang. Nature Mater. 21, 1, 24 (2022). https://doi.org/10.1038/s41563-021-01139-4
  32. B. Divinskiy, V.E. Demidov, A. Kozhanov, A.B. Rinkevich, S.O. Demokritov, S. Urazhdin. Appl. Phys. Lett. 111, 3, 032405 (2017)
  33. A. Hoffmann. IEEE Trans. Magn. 49, 10, 5172 (2013). https://doi.org/10.1109/TMAG.2013.2262947
  34. V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov. Nature Commun. 7, 1, 10446 (2016). https://doi.org/10.1038/ncomms10446
  35. M.E. Stebliy, M.A. Bazrov, Z.Z. Namsaraev, M.E. Letushev, A.G. Kozlov, V.A. Antonov, E.V. Stebliy, A.V. Davydenko, A.V. Ognev, Y. Shiota, T. Ono, A.S. Samardak. ACS Appl. Mater. Interfaces 15, 34, 40792 (2023). https://doi.org/10.1021/acsami.3c08979
  36. A.G. Kolesnikov, M.E. Stebliy, A.V. Ognev, A.S. Samardak, A.N. Fedorets, V.S. Plotnikov, X. Han, L.A. Chebotkevich. J. Phys. D 49, 42, 425302 (2016). https://doi.org/10.1088/0022-3727/49/42/425302
  37. A.G. Kolesnikov, A.V. Ognev, M.E. Stebliy, L.A. Chebotkevich, A.V. Gerasimenko, A.S. Samardak. J. Magn. Magn. Mater. 454, 78 (2018). https://doi.org/10.1016/j.jmmm.2018.01.056
  38. W.L. Yang, Z.R. Yan, Y.W. Xing, C. Cheng, C.Y. Guo, X.M. Luo, M.K. Zhao, G.Q. Yu, C.H. Wan, M.E. Stebliy, A.V. Ognev, A.S. Samardak, X.F. Han. Appl. Phys. Lett. 120, 12, 122402 (2022). https://doi.org/10.1063/5.0079400
  39. Z. Zhao, Z. Xie, Y. Sun, Y. Yang, Y. Cao, L. Liu, D. Pan, N. Lei, Z. Wei, J. Zhao, D. Wei. Phys. Rev. B 108, 2, 024429 (2023). https://doi.org/10.1103/PhysRevB.108.024429
  40. R.Q. Zhang, L.Y. Liao, X.Z. Chen, T. Xu, L. Cai, M.H. Guo, H. Bai, L. Sun, F.H. Xue, J. Su, X. Wang, C.H. Wan, H. Bai, Y.X. Song, R.Y. Chen, N. Chen, W.J. Jiang, X.F. Kou, J.W. Cai, H.Q. Wu, F. Pan, C. Song. Phys. Rev. B 101, 21, 214418 (2020). https://doi.org/10.1103/PhysRevB.101.214418

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru