Alteration of the Conductivity of Carbon Nanotubes' Percolation Networks by Functionalization
Kapustin S. N.1, Tsykareva Yu. V.1, Eseev M. K.1
1Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
Email: hare22@yandex.ru

PDF
A study on the dependence of the electric conductivity of carbon nanotube (CNT) percolation networks on the type and degree of functionalizaton has been carried out. The influence of the most commonly used -COOH, -OH and -CONH2 groups has been studied. A non-linear dependence of the conductivity on the number of functional groups has been detected. A small number of functional groups can improve conductivity, while a large number reduces it. We assume the existence of competing processes that increase conductivity (creation of impurity levels, changes in CNT geometry) and increase resistance (appearance of defects and scattering centers). The data can be used for manipulating the conductive properties of CNTs as well as selecting the optimal degree of functionalization while developing composites, nanodevices and heating surfaces. Keywords: carbon nanotubes, electrical conductivity, functionalization, percolation network.
  1. T.P. Dyachkova, A.G. Tkachev. Metody funktsionalizatsii i modifitsirobaniya uglerodnykh nanotrubok. Izdatel'slij dom "Spektr", M. (2013). 152 s. (in Russian)
  2. V.V. Ivanovskaya, V.L. Ivanovsky. Uspekhi khimii 80, 761, 2011 (2016). (in Russian)
  3. A.A. Ganin, L.A. Bityutskaya, E.N. Bormontov. Kondensirovannye sredy i mezhfaznye granitsy, 115, 247, (2013) (2018). (in Russian)
  4. E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave. Chem. Phys. Lett. 296, 1-2, 188 (1998). DOI: 10.1016/S0009-2614(98)01026-4
  5. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1995). 965 p
  6. UNT serii "Taunit", OOO "NanoTekhTsentr". (in Russian) Access mode: http://www.nanotc.ru/producrions/87-cnm-taunit, free (access date 27.03.2023)
  7. J. Chen, Q. Chen, Q. Ma, Y. Li, Zh. Zhu. J. Mol. Catal. A 356, 114 (2012). DOI: 10.1016/j.molcata.2011.12.032
  8. E.J. Weydemeyer, A.J. Sawdon, Ch.-A. Peng. Chem. Commun. 51, 27, 5939 (2015). DOI: 10.1039/C5CC01115A
  9. C.A. Furtado, U.J. Kim, H.R. Gutierrez, Ling Pan, E.C. Dickey, P.C. Eklund. J. Am. Chem. Soc. 126, 6095 (2004). DOI: 10.1021/ja039588a
  10. N.N. Breslavskaya, P.N. Dyachkov. Zhurn. neorgan. khimii, 45, 1830 (2000). (in Russian)
  11. A.V. Eletskiy. UFN, 179, 225 (2009). (in Russian)
  12. Z.J. Han, K. Ostrikov. Appl. Phys. Lett. 96, 233115 (2010). DOI: 10.1063/1.3449118

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru