Rare earth element influence on growth rate and critical current of high temperature superconducting tape
Guryev V. V.
1, Kulikov I. V.1, Abdyukhanov I. M.2, Alekseev M. V.2, Belotelova Yu. N.2, Volkov P.V.1, Konovalov P. V.2, Kruglov V. S.1, Krylov V. E.1, Lazarev D. V.1, Nikonov A. A.1, Ovcharov A. V.1, Rakov D. N., Shavkin S. V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2A.A. Bochvar All-Russia Advanced Research Institute for Inorganic Materials, Moscow, Russia
Email: Gurev_VV@nrcki.ru, GuryevVV@mail.ru
Samples of coated conductors based on REBa2Cu3O7-x, where RE denotes Y, Gd, Sm, Eu, Dy, have been studied. The superconducting layer was deposited by PLD method on steel substrate with textured layers of YSZ and CeO2. The lower the melting temperature of the corresponding rare-earth element, the higher the rate of formation of the HTS layer. It was found that in a perpendicular magnetic field at nitrogen temperature the critical current increases in the series Y -> Dy -> Gd -> Sm, while at helium temperature this trend is reversed. Keywords: REBCO, rare earth element, critical current, anisotropy.
- J.L. MacManus-Driscoll, S.C. Wimbush. Nature Rev. Mater. 6, 587 (2021). https://doi.org/10.1038/s41578-021-00290-3
- C. Yao, Y.Ma. Perspective 24, 6, 102541 (2021). https://doi.org/10.1016/j.isci.2021.102541
- Q.X. Jia, B. Maiorov, H. Wang, Y. Lin, S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll. IEEE Trans. Appl. Supercond. 15, 2, 8493837 (2005). https://doi.org/10.1109/TASC.2005.847797
- S. Zhang, S. Xu, Z. Fan, P. Jiang, Zh. Han, G. Yang, Y. Chen. Supercond. Sci. Technol. 31, 125006 (2018). https://doi.org/10.1088/1361-6668/aae460
- M. Erbe, P. Cayado, W. Freitag, K. Ackermann, M. Langer, A. Meledin, J. Hanisch, B. Holzapfel. Supercond. Sci. Technol. 33, 094002 (2020). https://doi.org/10.1088/1361-6668/ab9aa0
- J. Shi, Y. Zhao, G. Jiang, J. Zhu, Y. Wu, Y. Gao, X. Quan, X. Yu, W. Wu, Zh. Jin. J. Eur. Ceram. 41, 10, 5223 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.001
- S.R. Foltyn, L. Civale, J.L. MacManus-Driscol, Q.X. Jia, B. Maiorov, H. Wang, M. Maley. Nature Mater. 6, 631 (2007). https://doi.org/10.1038/nmat1989
- M. Yazdani-Asrami. Supercond. Sci. Technol. 36, 4, 043501 (2023). https://doi.org/10.1088/1361-6668/acbb34
- S.V. Shavkin, A.K. Shikov, I.A. Chernykh, V.V. Guryev, E.S. Kovalenko, E.V. Yakovenko, M.L. Zanaveskin, D.N. Rakov, A.E. Vorobieva. J. Phys. Conf. Ser. 507, 022030 (2014). https://doi.org/10.1088/1742-6596/507/2/022030
- I.A. Chernykh, A.M. Stroev, M.Ya. Garaeva, T.S. Krylova, V.V. Guryev, S.V. Shavkin, M.L. Zanaveskin, A.K. Shikov. Pisma v ZhTF 40, 1, 29 (2014). (in Russian). https://doi.org/10.1134/S1063785014010027
- A.E. Vorobeva, I.M. Abdyukhanov, D.N. Rakov, Yu.N. Belotelova, E.V. Kotova, P.V. Konovalov, V.I. Pantsyrny, A.K. Shikov. VANT. Ser. materialovedenie i novye materialy 2, 73, 108 (2012). eLIBRARY ID: 21467311. (in Russian)
- E.P. Krasnoperov, V.V. Guryev, S.V. Shavkin, V.E. Krylov, V.V. Sychugov, V.S. Korotkov, A.V. Ovcharov, P.V. Volkov. J. Eng. Sci. Technol. Rev. 12, 1, 104 (2019). https://doi.org/10.25103/jestr.121.12
- E.P. Krasnoperov, V.V. Sychugov, V.V. Guryev, S.V. Shavkin, V.E. Krylov, P.V. Volkov. Electr. Eng. 102, 1769 (2020). https://doi.org/10.1007/s00202-020-00977-w
- A.V. Irodova, I.D. Karpov, V.S. Kruglov, V.E. Krylov, S.V. Shavkin, V.T. Em. ZhTF 91, 12, 1964 (2021). (in Russian). https://doi.org/10.21883/JTF.2021.12.51761.169-21
- J.G. Lin, C.Y. Huang, Y.Y. Xue, C.W. Chu, X.W. Cao, J.C. Ho. Phys. Rev. B 51, 12900(R) (1995). https://doi.org/10.1103/PhysRevB.51.12900
- K. Zhang, B. Dabrowski, C.U. Segre, D.G. Hinks, I.K. Schuller, J.D. Jorgensen, M. Slaski. J. Phys. C 20, L935 (1987). https://doi.org/10.1088/0022-3719/20/34/001
- S.V. Samoylenkov, O.Yu. Gorbenko, A.R. Kaul. Physica C 278, 1-2, 49 (1997). https://doi.org/10.1016/S0921-4534(97)00111-1.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.