Morphology, molecular and electronic structure of the composite material based on graphene oxide and polyaniline
Myasoedova T.N. 1, Nedoedkova O.V. 2, Kalusulingam R.1, Mikheykin A. S. 2, Konstantinov A. S. 2, Yalovega G.E. 2
1Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, Taganrog, Russia
2Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia
Email: tnmyasoedova@sfedu.ru, nedoedkova@sfedu.ru, rajathsingk@gmail.com, amikheykin@sfedu.ru, alkons@sfedu.ru, yalovega@sfedu.ru

PDF
A composite material based on graphene oxide (GO) and polyaniline (PANI) was synthesized. By methods of scanning electron microscopy, Raman scattering, infrared spectroscopy confirmed the formation of the composite material, which is nanofibers of PANI in protonated state, tightly wrapped around agglomerated multilayered (2-3 layers) GO nanosheets. The optical bandgap width of the GO-PANI composite is reduced compared to that of the pure PANI, which makes it promising to use this material in supercapacitors and optical devices. Keywords: carbon-containing electrode materials, nanocomposites, supercapacitors, conductive structure.
  1. M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim. Polymers 13, 12, 2003 (2021)
  2. M. Muschi, C. Serre. Coordin. Chem. Rev. 387, 262 (2019)
  3. T.N. Myasoedova, T.A. Moiseeva, M.A. Kremennaya, A. Tirkeshov, G.E. Yalovega. J. Electron. Mater. 49, 8, 4707 (2020)
  4. R. Pal, S.L. Goyal, I. Rawal, A.K. Gupta, Ruchi. J. Phys. Chem. Solids 154, 110057 (2021)
  5. J. Xiang, L.T. Drzal. Polymer 53, 19, 4202 (2012)
  6. O.D. Omelchenko, O.L. Gribkova, A.R. Tameev, A.V. Vannikov. Tech. Phys. Lett. 40, 9, 807 (2014)
  7. D.P. Chatterjee, A.K. Nandi. J. Mater. Chem. A 9, 29, 15880 (2021)
  8. Q.E. Zhang, A.A. Zhou, J.J. Wang, J.F. Wu, H. Bai. Energy Environ. Sci. 10, 11, 2372 (2017)
  9. R. Kumar, K. Jahan, R.K. Nagarale, A. Sharma. ACS Appl. Mater. Interfaces 7, 1, 593 (2015)
  10. T.N. Myasoedova, V.A. Gadzhieva, Y.S. Miroshnichenko. J. Polym. Res. 29, 350 (2022)
  11. V.A. Shmatko, T.N. Myasoedova, T.A. Mikhailova, G.E. Yalovega. Kondensirovannye sredy i mezhfaznye granitsy, 21, 4, 569 (2019). (in Russian)
  12. J. Tauc. Mater. Res. Bull. 3, 1, 37 (1968)
  13. R. Nirlakalla, G. Surekha, R.P. Suvarna, K.V. Krishnaiah. ECS Trans. 107, 1, 19589 (2022)
  14. Graphene Number of Layers Calculator From ID/IG and I2D/IG Ratio via Raman Spectroscopy --- InstaNANO
  15. G.M. do Nascimento, M.A. Temperini. J. Raman Spectroscopy 39, 7, 772 (2008)
  16. C. Harish, V. Sai SreeHarsha, C. Santhosh, R. Ramachandran, M. Saranya, T. Mudaliar Vanchinathan, K. Govardhan, A. Nirmala Grace. Adv. Sci. Eng. Med. 5, 1 (2013)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru