On the thermal stability of nanostructure due to microalloying with interstitial elements: Fe-Cr-N nanocrystalline system
Dorofeev G.A. 1, Ulyanov A.L. 1, Porsev V.E. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: gadorofeev@udman.ru, ulyanov@udman.ru, porsev@udman.ru

Low thermal stability of grain structure is the main factor preventing the use of nanocrystalline (NC) materials at elevated temperatures. In this paper, a comparative study of the thermal stability of NC grain sizes of pure α-Fe and Fe-20Cr, Fe-19.5Cr-0.5N (at.%) ferritic alloys obtained by mechanical alloying was carried out. It has been shown that the Fe-20Cr binary alloy is much more thermally stable than NC α-Fe. However, the Fe-19.5Cr-0.5N NC alloy does not show a strong increase in thermal stability compared to Fe-20Cr, despite the fact that Cr2N particles are precipitated during the heating process. It is shown that the actual size of Cr2N particles (30 nm according to the broadening of X-ray diffraction peaks) significantly exceeds the critical particle size d*=8 nm above which, according to Gladman, there is no pinning of grain boundaries. Effective strategies for increasing the thermal stability of nitrogen microdoped Fe-Cr alloys are discussed within the critical size model of pinning particles and the thermokinetic grain growth model. Keywords: mechanical alloying, nanocrystalline Fe-Cr alloy, nitrogen, thermal stability.
  1. E.N. Hahn, M.A. Meyers. Mater. Sci. Eng. A. 646, 101 (2015)
  2. N. Liang, Y. Zhao. J. Alloys Compd. 938, 168528 (2023)
  3. R.A. Andrievsky. Uspekhi khimii 71, 967 (2002). (in Russian)
  4. H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu. Int. Mater. Rev. 62, 303 (2017)
  5. H. Peng, Z. Jian, F. Liu. Int. J. Ceram. Eng. Sci. 2, 49 (2020)
  6. C.E. Krill, H. Ehrhardt, R. Birringer. Int. J. Mater. Res. 96, 1134 (2022)
  7. J.W. Cahn. Acta Met. 10, 789 (1962)
  8. M. Hillert, B. Sundman. Acta Met. 24, 731 (1976)
  9. R.A. Andrievski. J. Mater. Sci. 49, 1449 (2014)
  10. P.A. Manohar, M. Ferry, T. Chandra. ISIJ Int. 38, 913 (1998)
  11. K. Huang, R.E. Loge. Zener pinning. Ref. Modul. Mater. Sci. Mater. Eng. (2016). P. 1-8
  12. A.R. Kalidindi, C.A. Schuh. Acta Mater. 132, 128 (2017)
  13. R.L. Klueh, D.R. Harries / Ed. R. Klueh, D. Harries. 100 Barr Harbor Drive. PO Box C700. West Conshohocken. PA 19428-2959: ASTM International (2001)
  14. K. Ehrlich K, J. Konys, L. Heikinheimo. J. Nucl. Mater. 327, 140 (2004)
  15. V.E. Porsev, A.L. Ulyanov, G.A. Dorofeev. Met. Mater. Trans. A 50, 5977 (2019)
  16. G.A. Dorofeev, I.V. Sapegina, V.I. Ladyanov, B.E. Pushkaryov, E.A. Pechina, D.V. Prokhorov. FMM 113, 1014 (2012). (in Russian)
  17. C.H. Moelle, H.J. Fecht. Nanostruct. Mater. 6, 421, (1995)
  18. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi. J. Appl. Cryst. 48, 598 (2015)
  19. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels. J. Appl. Crystallogr. 15, 308 (1982)
  20. G.A. Dorofeev, A.N. Streletsky, I.V. Povstugar, A.V. Protasov, E.P. Elsukov. Kolloid. zhurn. 74, 710 (2012). (in Russian)
  21. E.V. Voronina, N.V. Ershov N.V, A.L. Ageev, Yu.A. Babanov. Phys. Status Solidi 160, 625 (1990)
  22. Y.H. Zhao, H.W. Sheng, K. Lu. Acta Mater. 49, 365 (2001)
  23. T. Gladman. Proc. Royal Soc. London. Ser. A. Mathemat. Phys. Sci. 294, 298 (1966)
  24. A.K. Koul, F.B. Pickering. Acta Met. 30, 1303 (1982)
  25. Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, Y.M. Zhao. J. Alloys Compd. 608, 338 (2014)
  26. Z. Chen, F. Liu, X.Q. Yang, C.J. Shen. Acta Mater. 60, 4833 (2012)
  27. K.A. Bywater, D.J. Dyson. Met. Sci. 9, 155 (1975)
  28. A. Deschamps, C.R. Hutchinson. Acta Mater. 220, 117338 (2021)
  29. C. Zener. J. Appl. Phys. 20, 950 (1949)
  30. Ya.S. Umansky, Yu.A. Skakov. Fizika metallov. Atomnoe stroenie metallov i splavov, Atomizdat, M., (1978). 352 s. (in Russian)
  31. G.V. Samsonov. Nitridy. Nauk. dumka, Kiev, (1969), 380 s. (in Russiasn)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru