Physical and optical properties of polycrystalline Cu0.27Ga1.85Se1.88 and Cu0.33Ga1.54Se2.13, films synthesized by controlled selenization
Romanova O. B. 1, Gerasimova Yu. V.1,2, Gadzhiev T. M.3, Aplesnin S. S.1,4, Aleksandrovsky A. S.1,2, Sitnikov M. N.4, Aliev M. A.3, Udod L. V.1,4, Abdelbaki H.4
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Institute of engineering physics and radio electronics, Siberian Federal University, Krasnoyarsk, Russia
3Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
4Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: rob@iph.krasn.ru, jul@iph.krasn.ru, apl@iph.krasn.ru, aleksandrovsky@kirensky.ru, kineru@mail.ru, aliev_marat@mail.ru, luba@iph.krasn.ru, abdelhichem@yandex.com

PDF
Polycrystalline films of Cu0.27Ga1.85Se1.88 and Cu0.33Ga1.54Se2.13 with a chalcopyrite structure of the Cu-Ga-Se system were synthesized. The effect of selenization temperature on the chemical composition and structure of films was studied by X-ray phase analysis and electron microscopy. The dependence of film resistance on concentration and temperature has been studied. The effect of photoconductivity was discovered on Cu0.27Ga1.85Se1.88 films. The Raman spectra of these films were calculated. From the absorption spectra, the Urbach energy EU=0.9 eV was determined, which indicates a nouniform distribution of localized states in the electronic structure of the films. Migration and dipole-orientation contributions to the electrical polarization of the films have been established. Using the Debye model, the relaxation time in film samples of the Cu-Ga-Se system was calculated. Keywords: polycrystalline films, synthesis of films of the Cu-Ga-Se system, Raman spectra, electrical properties, photoconductivity.
  1. S.N. Mustafaeva, M.M. Asadov, D.T. Guseinov, I. Kasymoglu. Phys. Solid State 57, 1095 (2015)
  2. S.N. Mustafaeva, S.M. Asadov, D.T. Guseinov, I. Kasimoglu. Semicond. 19, 201 (2016)
  3. Xiaobo Hu, Juanjuan Xue, Jiao Tian, GuoenWeng, Shaoqiang Chen. Appl. Opt. 56, 2330 (2017)
  4. D.W. Houck, S.V. Nandu, T.D. Siegler, B.A. Korgel. ACS Appl. Nano Mater. 2, 4673 (2019)
  5. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla. pss (RRL) 9, 28 (2015)
  6. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop. Prog. Photovoltaics 24, 905 (2016)
  7. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla. Prog. Photovoltaics 19, 894 (2011)
  8. G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J.C.C.M. Huijben, J.J. Schermer. Sol. Energy Mater. Sol. Cells 93, 1488 (2009)
  9. Abderrahmane Belghachi, Naima Liman. Chin. J. Phys. 55, 1127 (2017)
  10. Y. Xu, J.N. Munday. IEEE J. Photovoltaics 4, 233 (2014)
  11. B. Mahmoudi, F. Caddeo, T. Lindenberg, T. Schneider, T. Holscher, R. Scheer, W. Maijenburg. Electrochim. Acta 367, 13718 (2021)
  12. I. Kasmoglu, T.G. Kerimova, I.A. Mamedova. J. Semicond. 45, 30 (2011)
  13. O.C. Cantser, L.L. Kulyuk, T.D. Shemakova, A.V. Siminel, V.E. Tezlevan. Jpn. J. Appl. Phys. 32, 630 (1993)
  14. S. Levchenko, N.N. Syrbu, V.E. Tezlevan, E. Arushanov, J.M. Merino, M. Leon. J. Phys. D 41, 055403 (2008)
  15. M. Rusu, S. Doka, C.A. Kaufmann, N. Grigorieva, Th. Schedel-Niedrig, M.Ch. Lux-Steiner. Thin Solid Films 480-481, 341 (2005)
  16. Shogo Ishizuka. Phys. Status Solidi A 216, 1800873 (2019)
  17. V. Nadenau, U. Rau, A. Jasenek, H.W. Schock. J. Appl. Phys. 87, 584 (2000)
  18. Shigeru Ikeda, Wakaba Fujita, Riku Okamoto, Yoshitaro Nose, Ryoji Katsube, Kenji Yoshinoand Takashi Harada. RCS Adv. 10, 40310 (2020)
  19. M.M. Islam, T. Sakurai, A. Yamada, S. Otagiri, S. Ishizuka, K. Matsubara, S. Niki, K. Akomoto. Sol. Energy Mater Sol. Cells 95, 231 (2011)
  20. D. Schmid, M. Ruckh, F. Grunwald, H.W. Schock. J. Appl. Phys. 73, 2902 (1993)
  21. K. Sakurai, R. Hunger, N. Tsuchimochi, T. Baba, K. Matsubara, P. Fons, A. Yamada, T. Kojima, T. Deguchi, H. Nakanishi, S. Niki. Thin Solid Films 431-432, 6 (2003)
  22. S. Ishizuka, J. Nishinaga, K. Beppu, T. Maeda, F. Aoyagi, T. Wada, A. Yamada, J. Chantana, T. Nishimura, T. Minemoto, M.M. Islam, T. Sakurai, N. Terada. Phys. Chem. Chem. Phys. 24, 1262 (2022)
  23. M.M. Islam, A. Yamada, T. Sakurai, M. Kubota, S. Ishizuka, K. Matsubara, S. Niki, K. Akimoto. J. Appl. Phys. 110, 014903 (2011)
  24. U. Rau, H.W. Schock. Appl. Phys. A 69, 131 (1999)
  25. T.M. Gadzhiev, M.A. Aliev, A.M. Ismailov, A.M. Aliev, G.A. Aliev, Z.Kh. Kalazhokov, M.R. Tlenkopachev, Kh.Kh. Kalazhokov, A.Sh. Asvarov, A.E. Muslimov, V.M. Kanevsky. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 65 (2022)
  26. D.S. Su, W. Neumann, M. Giersig. Thin Solid Films 361-362, 218 (2000)
  27. CRC Hand book of Chemistry and Physics / Ed. D.R. Lide. CRC Press (2004)
  28. S.J. Clark, C.J. Pickard, P.J. Hasnip, K. Refson, M.C. Payne, K. Refson, M. Payne. Z. Kristallogr.-Cryst. Mater. 220, 567 (2005)
  29. B.G. Pfrommer, M. C\^ote, S.G. Louie, M.L. Cohen. J. Comput. Phys. 131, 233 (1997)
  30. M. Souilah, A. Lafond, C. Guillot-Deudon, S. Harel, M. Evain. J. Solid State Chem. 183, 2274 (2010)
  31. C. Rincon, F.J. Ramirez. J. Appl. Phys. 72, 4321 (1992)
  32. N.A. Abdullaev, Kh.V. Aliguliyeva, L.N. Aliyeva, I. Qasimoglu, T.G. Kerimova. J. Semicond. 49, 428 (2015)
  33. T. Klinkert, M. Jubault, F. Donsanti, D. Linco. J. Renew. Sustain. Energy. 6, 11403 (2014)
  34. P.T. Oreshkin, B.K. Starchenkov, L.P. Andreeva. Sov. Phys. J. 13, 556 (1970)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru