Submonolayer sodium coverages on the surface of the gold film
Dementiev P. A.1, Dementieva e. V.1, LapushkinM. N.1, Timoshnev S. N.1,2
1Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: demenp@yandex.ru, ivanova@mail.ioffe.ru, lapushkin@ms.ioffe.ru, timoshnev@mail.ru

PDF
Photoelectron spectroscopy studies of the electronic structure of a 2D-Au film deposited on a W surface with a natural oxide have been carried out in situ in ultrahigh vacuum, before and after adsorption of Na atoms. The photoemession spectra from the valence band and core levels of Au 4f, W 4f and Na 2p were studied under synchrotron excitation in the photon energy range of 120-300 eV. A 0.83 nm thick 2D gold film formed on the tungsten surface has a valence band close to the valence band of the bulk sample. The diffusion of Na atoms deep into the gold film was not detected, which indicates the layer-by-layer growth of the 2D-Au film. Two states have been found: Nadelta+ and Na+, which exist even with a 0.15 monolayer sodium coverage, that indicates the formation of Na islands and single adsorption of Na atoms. The density functional method is used to calculate the electronic structure of a 2D-Au layer without and with adsorbed Na. It is established that the adsorption of Na atoms in the hollow or bridge position is preferable. It is found that the Na adsorption leads to the surface reconstruction. Keywords: adsorption, sodium, gold, surface reconstruction, photoemission, density functional method.
  1. A. Neumann, S.L.M. Schroeder, K. Christmann. Phys. Rev. B 51, 23, 17007 (1995)
  2. J.V. Barth, R.J. Behm, G. Ertl. Surf. Sci. Lett. 302, 3, L319 (1994)
  3. J.V. Barth, R.J. Behm, G. Ertl. Surf. Sci. 341, 1, 62 (1995)
  4. P.A. Dement'ev, E.V. Ivanova, M.N. Lapushkin, D.A. Smirnov, S.N. Timoshnev. Phys. Solid State 62, 8, 1317 (2020)
  5. V.N. Ageev, E.Yu. Afanas'eva. Phys. Solid State 48, 12, 2347 (2006)
  6. E. Bauer, H. Poppa, G. Todd, P.R. Davis. J. Appl. Phys. 48, 9, 3773 (1977)
  7. E.Yu. Afanas'eva. Tech. Phys. 58, 6, 793 (2013)
  8. M.V. Knat'ko, V.I. Paleev, M.N. Lapushkin. Tech. Phys. 43, 10, 1231-1234 (1998)
  9. V.N. Ageev, Yu.A. Kuznetsov. Phys. Solid State 50, 2, 379 (2008)
  10. H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn. Surf. Interface Anal. 47, 12, 871 (2015)
  11. M. Klasson, J. Hedman, A. Berndtsson, R. Nilsson, C. Nordling, P. Melnik. Phys. Scr. 5, 1-2, 93 (1972)
  12. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys. Condens. Matter 21, 39, 395502 (2009)
  13. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996)
  14. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B 46, 11, 6671 (1992)
  15. N. Troullier, J.L. Martins. Phys. Rev. B 43, 3, 1993 (1991)
  16. S. Nishihara. BURAI 1.3 A GUI of Quantum ESPRESSO. https://nisihara.wixsite.com/burai (accessed 11 May 2023)
  17. V.L. Karbivskii, A.A. Romansky, L.I. Karbivska, S.I. Shulyma. Appl. Nanosci. 12, 3, 781 (2022). 794 p
  18. L.-Y. Gan, Yu-Ju. Zhao. J. Chem. Phys. 133, 9, 094703 (2010)
  19. P.J. Goddard, J. West, R.M. Lambert. Surf. Sci. 71, 2, 447 (1978)
  20. S. Gurses, F. Ersan. Sci Academique 1, 1, 31 (2020)
  21. A. Visikovskiy, K. Mitsuhara, M. Hazama, M. Kohyama, Y. Kido. J. Chem. Phys. 139, 14, 144705 (2013)
  22. A. Regoutz, M. Mascheck, T. Wiell, S.K. Eriksson, C. Liljenberg, K. Tetzner, B.A.D. Williamson, D.O. Scanlon, P.l Palmgren. Rev. Sci. Instr. 89, 7, 073105 (2018)
  23. F.A. Stevie, C.L. Donley. J. Vac. Sci. Technol. A 38, 6, 063204 (2020)
  24. G.H. Major, T.G. Avval, D.I. Patel, D. Shah, T. Roychowdhury, A.J. Barlow, P.J. Pigram, M. Greiner, V. Fernandez, A. Herrera-Gomez, M.R. Linford. Surf. Interface Anal. 53, 8, 689 (2021)
  25. S. Doniach, M. Sunjic. J. Phys. C 3, 2, 285 (1970)
  26. D. Cabrera-German, G. Molar-Velazquez, G. Gomez-Sosa, W. de la Cruz, A. Herrera-Gomez. Surf. Interface Anal. 49, 11, 1078 (2017)
  27. A.C. Simonsen, F. Yubero, S. Tougaard. Phys Rev. B 56, 3, 1612 (1997)
  28. A. Klein, T. Loher, C. Pettenkofer, W. Jaegermann. J. Appl. Phys. 80, 9, 5039 (1996)
  29. P.H. Citrin. Phys. Rev. B 8, 12, 5545 (1973)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru