Diffusion and field desorption of barium atoms from an inhomogeneous rhenium surface
Bernatskii D. P. 1, Pavlov V. G. 1
1Ioffe Institute, St. Petersburg, Russia
Email: bernatskii@ms.ioffe.ru, vpavlov@ms.ioffe.ru

PDF
Using field desorption microscopy, it is shown that the nature of desorption by an electric field of adsorbed barium atoms on a quasi-spherical surface of a rhenium single crystal that is inhomogeneous in work function depends on the rate of diffusion of adsorbate atoms over the surface. In the absence of diffusion of barium atoms over the surface (T=300 K), a pulse character of desorption is observed. At rhenium temperature T=700 K migration equilibrium is established on the surface, at which the concentration of barium adatoms on the faces of a rhenium single crystal can be different. It has been shown that in this case, a stationary field desorption mode is realized, in which the emission of barium ions comes from faces with higher work function. Keywords:field desorption, microscopy, diffusion, work function, rhenium, barium. DOI: 10.61011/PSS.2023.08.56584.87
  1. J.H. Gross. EJMS 29, 1, 21 (2023)
  2. Z.A. Isakhanov, I.O. Kosimov, B.E. Umirzakov, R.M. Erkulov. Tech. Phys. 65, 1, 114 (2020)
  3. Y.P. Maishev. Russ. Microelectronics 48, 6, 403 (2019)
  4. D.P. Bernatsky, V.G. Pavlov. V Mezhvuz. sb. nauch.tr. / Ed. by V.M. Samsonova, N.Yu. Sdobnyakova. Tver. gos. un-t, Tver 10 (2017). P. 99 (in Russian)
  5. D.P. Bernatskii, V.G. Pavlov. Tech. Phys. Lett. 44, 2, 178 (2018)
  6. E.V. Klimenko, A.G. Naumovets. FTT 13, 1, 33 (1971). (in Russian)
  7. E.W. Muller, T.T. Tsong. Progress Surf. Sci. 4, 1 (1974)
  8. D.P. Bernatskii, V.G. Pavlov. Bull. RAS: Phys. 73, 5, 673 (2009)
  9. T. Beach, R. Vanselow. Appl. Phys. 4, 3, 265 (1974)
  10. D.P. Bernatskii, V.G. Pavlov. Phys. Low-Dim. Struct. 7, 51 (1994)
  11. A.N. Dobretsov, M.V. Gomoyunova. Emissionnaya elektronika. Nauka, M., (1966). 559 p. (in Russian)
  12. D.P. Bernatsky, V.G. Pavlov. V Mezhvuz. sb. nauch.tr. / Ed. by V.M. Samsonova, N.Yu. Sdobnyakova. Tver. gos. un-t, Tver 9 (2017). P. 89 (in Russian)
  13. L. Schmidt, R. Gomer. J. Chem. Phys. 42, 10, 3573 (1965)
  14. V.K. Medvedev, I.N. Yakovkin. FTT 23, 3, 669 (1981). (in Russian)
  15. E.V. Muller. UFN LXXVII, 3, 481 (1962). (in Russian)
  16. A. Dalgarno. Adv. Phys. 11, 44, 281 (1962)
  17. V.N. Shrednik, E.V. Snezhko. FTT 6, 11, 3409 (1964). (in Russian)
  18. D.P. Bernatsky, V.G. Pavlov. V Mezhvuz. sb. nauch.tr. / Ed. by V.M. Samsonova, N.Yu. Sdobnyakova. Tver. gos. un-t, Tver 11 (2019). P. 91. (in Russian)
  19. Y. Suchorski. In: Surface Science Tools for Nanomaterials Characterization / Ed. C.S.S.R. Kumar. Springer--Verlag, Berlin--Heidelberg (2015). P. 227-272

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru