The sintering temperature effect on the microstructure and dielectric properties of Bi4Ti3O12 doped with neodymium
Zubkov S. V.1, Parinov I. A.2, Nazarenko A. V.3, Pavlenko A. V.1,3
1Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
2I.I. Vorovich Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, Rostov-on-Don, Russia
3Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
Email: svzubkov61@mail.ru

PDF
A new set of perovskite-like Bi4-xNdxTi3O12 (x=0.1, 0.3, 0.5, 0.7) oxides were synthesized by the method of high-temperature solid-phase reaction at the temperatures of 1000oC and 1050oC. X-ray diffraction study showed that these compounds are single-phase and have the structure of the Aurivillius phases (AP) family with parameters close to the orthorhombic unit cell corresponding to the space group B2cb (41). The microstructure was studied for all obtained Bi4-xNdxTi3O12 (x=0.1, 0.3, 0.5, 0.7) compositions sintered at temperatures of 1000oC and 1050oC. Its analysis also showed that the crystallites are similar one of AP family and characterized with a lamellar-like shape. The relative permittivity ε/ε0 and the dielectric loss tangent tgdelta were measured as a function of temperature at frequencies in the range of 100 kHz to 1 MHz. Keywords: Aurivillius phases, Bi4-xNdxTi3O12, Curie temperature TC, microstructure, permittivity. DOI: 10.61011/PSS.2023.08.56568.88
  1. B. Aurivillius. Arkiv. Kemi 1, 499 (1949)
  2. B. Aurivillius. Arkiv. Kemi 37, 512 (1950)
  3. G.A. Smolensky, R.V. Kozhevnikova. DAN SSSR 76, 4, 519 (1951). (in Russian)
  4. G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, S.N. Popov. Sov. fizika tverdogo tela 1, 169 (1959). (in Russian)
  5. E.C. Subbarao. Phys. Rev. 122, 3, 804 (1961)
  6. E.C. Subbarao. J. Am. Ceram. Soc. 45, 166 (1962)
  7. S.V. Zubkov. J. Adv. Dielectrics, 11, 2160018 (2021), DOI:10.1142/S2010135X21600183
  8. S.V. Zubkov. J. Adv. Dielectrics 10, 1-2, 2060002 (2020). DOI:10.1142/S2010135X20600024
  9. S.V. Zubkov, V.G. Vlasenko. FTT 59, 12 (2017). (in Russian). DOI: 10.21883/FTT.2017.12.45224.133
  10. S.V. Zubkov, I.A. Parinov, A.V. Nazarenko, Yu.A. Kuprina. Phys. Solid State 64, 10 (2022)
  11. S.V. Zubkov, S.I. Shevtsova. Part of the Springer Proc. Materials book series 6, 173-182 (2020)
  12. S.V. Zubkov. DOI:10.1142/S2010135X20600085
  13. S.V. Zubkov, V.G. Vlasenko, V.A. Shuvaeva, S.I. Shevtsova. FTT 58, 1 (2016). (in Russian)
  14. C. A.-Pazde Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott. Nature London 374, 627 (1995)
  15. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo. Nature London 401, 682 (1999)
  16. L. Pardo, A. Castro, P. Millan, C. Alemany, R. Jimenez, B. Jimenez. Acta Mater. 48, 2421 (2000)
  17. R.L. Withers, J.G. Thompson, A.D. Rae. J. Solid State Chem. 94, 404 (1991)
  18. S.E. Cummins, L.E. Cross. J. Appl. Phys. 39, 2268 (1968)
  19. R. Takahashi, Y. Yonezawa, M. Ohtani, M. Kawasaki, K. Nakajima, T. Chikyow, H. Koinuma, Y. Matsumoto. Adv. Fun. Mater. 16, 485 (2006)
  20. U. Chon, H.M. Jang, M.G. Kim, C.H. Chang. Phys. Rev. Lett. 89, 87601 (2002)
  21. J.Y. Choi, C.H. Choi, K.-H. Cho, T.G. Seong, S. Nahm, C.Y. Kang, S.J. Yoon, J.-H. Kim. Acta Mater. 57, 2454 (2009)
  22. H.N. Lee, D. Hesse, N. Zakharov, U. Gosele. Science 296, 2006 (2002)
  23. H. Irie, H. Saito, S. Ohkoshi, K. Hashimoto. Adv. Mater. 17, 491 (2005)
  24. K. Yamamoto, Y. Kitanaka, M. Suzuki, M. Miyayama, Y. Noguchi, C. Moriyoshi, Y. Kuroiwa. Appl. Phys. Lett. 91, 162909 (2007)
  25. C.B. Long, Q. Chang, H.Q. Fan. Sci. Rep. 7, 4193 (2017)
  26. H. Watanabe, T. Kimura, T. Yamaguchi. Am. Ceram. Soc. Bull. 74, 139 (1991)
  27. J. Liu, Z. Shen, M. Nygren, Y. Kan, P. Wang. J. Eur. Ceram. Soc. 23, 3233 (2006)
  28. M. Takahash, Y. Noguchi, M. Miyayam. Jpn. J. Appl. Phys. 42, 6222 (2003)
  29. H.S. Shulman, D. Damjanovic, N. Setter. J. Am. Ceram. Soc. 83, 528 (2000)
  30. M. Takahashia, Y. Noguchi, M. Miyayam. Solid State Ion. 172, 325 (2004)
  31. H.S. Shulman, M. Testorf, D. Damjanovic, N. Setter. J. Am. Ceram. Soc. 79, 3124 (1996)
  32. C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li. Scr. Mater. 75, 70 (2014)
  33. C. Long, B. Wang, W. Ren, K. Zheng, H. Fan, D. Wang, L. Liu. Appl. Phys. Lett. 117, 032902 (2020)
  34. L. Shen, D. Xiao, J. Zhu, P. Yu, J. Zhu, D. Gao. J. Mater. Syn. Proc. 9, 369 (2001)
  35. A.Z. ??, C. Quinelato, A. Ries, B.D. Stojanovic, E. Longo, J.A. Varela. Mater. Chem. Phys. 98, 481 (2006)
  36. S.W. Kang, M.K. Song, S.W. Rhee, J.H. Suh, C.G. Park. Integr. Ferroelectrics 72, 61 (2005)
  37. B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-Santos, C. Quinelato, E. Longo, J.A. Varela. Ceram. Int. 32, 707 (2006)
  38. Y. Kan, X. Jin, G. Zhang, P. Wang, Y.B. Cheng, D. Yan. J. Mater. Chem. 14, 3566 (2004)
  39. P.-H. Xiang, Y. Kinemuchi, K. Watari. J. Eur. Ceram. Soc. 27, 663 (2007)
  40. U. Chon, H.M. Jang, I.W. Park, Solid State Commun. 127, 469 (2003)
  41. J.C. Bae, S.S. Kim, E.K. Choi, T.K. Song, W.J. Kim, Y.I. Leed, Thin Solid Films. 472, 90 (2005)
  42. Y. Kan, P. Wang, Y. Li, Y.-B. Cheng, D. Yan. J. Eur. Ceram. Soc. 23, 2163(2003)
  43. W. Chen, Y. Kinemuchi, T. Tamura, K. Miwa, K. Watari. Mater. Res. Bull. 41, 2094 (2006)
  44. W. Chen,Y. Hotta, T. Tamura, K. Miwa, K. Watari. Scripta Mater. 54, 2063 (2006)
  45. SV. Zubkov, I.A. Parinov, A.V. Nazarenko, Y.A. Kuprina. Physics and Mechanics of New Materials and Their Applications--Proceedings of the International Conference PHENMA 2021-2022, Springer Proceedings in Materials / Eds I.A. Parinov, S.-H. Chang, A.N. Soloviev. Springer Nature, Switzerland 20, 163 (2023)
  46. W. Kraus, G. Nolze. Powder Cell for Windows 2.39, Federal Institute for Materials Research and Testing, Berlin (1999)
  47. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu. Appl. Phys. Lett. 91, 202907 (2007)
  48. Z.P. Yang, Y.F. Chang, B. Liu, L.L. Wei, Mater. Sci. Eng. A 432, 292 (2006)
  49. R.E. Newnham, R.W. Wolf, J.F. Dorrian, Mat. Res. Bull. 6, 1029 (1971)
  50. M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, A.R. West. J. Appl. Phys. 106, 04106 (2009)
  51. V.M. Goldschmidt. Geochemische Verteilungsgesetze der Elemente, J. Dybwad, Oslo, 1923 (1927)
  52. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)
  53. V.A. Isupov. Ferroelectrics 189, 211 (1996).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru