Simulation of two-photon events in a superconducting strip for different thermal bond lengths
Shchetinina E. V.1,2, Dryazgov M. A.2,3, Korneeva Yu. P.2, Korneev A. A.2,3, Tarkhov M. A.2
1National Research University «Moscow Power Engineering Institute», Moscow, Russia
2 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
3National Research University Higher School of Economics, Moscow, Russia
Email: ShchetininaYV@mpei.ru

PDF
The results of the study of the evolution of two hot spots formed by the simultaneous absorption of two photons are presented. The lifetime of normal domains and the maximum resistance of the superconducting strip were estimated depending on the distance between the absorbed photons. The minimum distance between the edges of the temperature distribution of hot spots, leading to the loss of thermal coupling, is 28 nm, which is consistent with experimental data. The possibility of distinguishing two-photon events for different reading schemes was evaluated. Keywords: superconductivity, SSPD, hot spot, NbN strip. DOI: 10.61011/PSS.2023.07.56431.42H
  1. J. Chang. "Detecting Single Photons with Superconducting Nanowires". Delft University of Technology (2021). 144 p
  2. H. Takesue, S.W. Nam, Q. Zhang, R. Hadi eld, T. Honjo, K. Tamaki, Y. Yamamoto. Nature Photon. 1, 343 (2007)
  3. J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G.N. Gol'tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, A. Verevkin, K. Wilsher, C. Tsao, R. Sobolewski. Electron. Lett. 39, 1086 (2003)
  4. E. L. Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. L'erondel, G. Leblond, P. Kern, J. Fedeli, P. Royer. Nature Photon. 1, 473 (2007)
  5. K. Suzuki, S. Miki, S. Shiki, Y. Kobayashi, K. Chiba, Z. Wang, M. Ohkubo. Physica C 468 (2008)
  6. L.J. Deutsch. Nat. Astronomy 4, 9, 907 (2020)
  7. R. Cheng, Y. Zhou, S. Wang, M. Shen, T. Taher, H. Tang. Nat. Photon. 17, 112 (2022)
  8. Iman Esmaeil Zadeh, J. Chang, Johannes W.N. Los, Samuel Gyger, Ali W. Elshaari, Stephan Steinhauer, Sander N. Dorenbos, Val Zwiller. Appl. Phys. Lett. 118, 190502 (2021)
  9. R.H. Hadfield. Nat. Photon. 3, 696 (2009)
  10. M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, J.W. Pan. Opt. Lett. 42, 3541 (2017)
  11. K. Morimoto, A. Ardelean, M.L. Wu, A.C. Ulku, I.M. Antolovic, C. Bruschini, E. Charbon. Optica 7, 346 (2020)
  12. A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko. Appl. Phys. Lett. 83, 4, 791 (2003)
  13. J.J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M.J.A. de Dood, A. Fiore, M.P. van Exter. Opt. Exp. 20, 3, 2806 (2012)
  14. M.I. Polyakova, I.N. Florya, A.V. Semenov, A.A. Korneev, G.N. Goltsman. J. Phys.: Conf. Ser. 1410, 012166 (2019)
  15. A.N. Zotova, D.Y. Vodolazov. Phys. Rev. B 85, 024509 (2012)
  16. K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren. IEEE Trans. Appl. Supercond. 17, 581 (2007)
  17. M. Dryazgov, A. Semenov, N. Manova, Y. Korneeva, A. Korneev. J. Phys.: Conf. Ser. 1695, 012195 (2020)
  18. D. Zhu, M. Colangelo, C. Chen, B.A. Korzh, F.N. Wong, M.D. Shaw, K.K. Berggren. Nano Lett. 20, 3858 (2020)
  19. M. Endo, T. Sonoyama, M. Matsuyama, F. Okamoto, S. Miki, M. Yabuno, F. China, H. Terai, A. Furusawa. Opt. Exp. 29, 8, 11728 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru