Physics of the Solid State
Volumes and Issues
Features of obtaining by the method of matrix synthesis, structure and magnetic properties of iron nanowires
Zagorskiy D. L.1, Doludenko I. M.1, Frolov K. V.1, Perunov I. V.1, Chuev M. A.2, Chumakov N. K.3, Kalachikova I. V.1, Artemov V. V.1, Tziganova T. V.1, Kruglikov S. S.4
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
2Valiev Institute of Physics and Technology of RAS, Moscow, Russia
3National Research Center “Kurchatov Institute”, Moscow, Russia
4Mendeleev University of Chemical Technology, Moscow, Russia

Nanowires from iron were investigated. Samples in the form of arrays of parallel threads (wires) were obtained by matrix synthesis using track membranes. Matrices with parallel pores of 100 nm were used, and the growth voltage was varied - 0.8 V, 1 V and 1.2 V. Electron microscopic studies of the growth matrix and samples were carried out. The obtained data of Mossbauer spectroscopy and magnetometry correlate well. Thus, a comparison of the results obtained by these methods showed that with an increase in the deposition potential during the synthesis of nanowires, the misorientation angle of the magnetic moments of domains increases. It is also shown that as the deposition potential increases, the coercive force decreases. Keywords: magnetic nanowires, matrix synthesis, structure, Mossbauer spectroscopy, magnetic properties.
  1. J. Ping Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer. Nanoscale Magnetic Materials and Applications. Springer Dordrecht, Heidelberg, London, N. Y. (2009). 732 p
  2. D.Y. Nam, S.H. Kim, Y.S. Jeon, Y.K. Kim. IEEE Transact. Magn. 53, 11, 1 (2017)
  3. D.Y. Nam, A.Y. Samardak, Y.S. Jeon, S.H. Kim, A.V. Davydenko, A.V. Ognev, A.S. Samardak. Y.K. Kim. Nanoscale 10, 20405 (2018)
  4. R. Streubel, P. Fischer, F. Kronast, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, O.G. Schmidt, D. Makarov. Phys. D 49, 363001 (2016)
  5. D. Gregurec, A.W. Senko, A. Chuvilin, P.D. Reddy, A. Sankara\=raman, D. Rosenfeld, P.H. Chiang, F. Garcia, I. Tafel, G. Varnavides, E. Ciocan, P. Anikeeva. ACS Nano 14, 7, 8036 (2020)
  6. T.N. Zamay, V.S. Prokopenko, S.S. Zamay, K.A. Lukyanenko, O.S. Kolovskaya, V.A. Orlov, G.S. Zamay, R.G. Galeev, A.A. Narodov, A.S. Kichkailo. Nanomaterials 11, 6, 1459 (2021)
  7. J. Xia, X. Zhang, X. Liu, Y. Zhou, M. Ezawa. Commun. Mater. 3, 88 (2022)
  8. M. Vazquez. Magnetic Nano- and Microwires. Design, Synthesis. Properties and Applications. Woodhead Publishing (2020). 997 p
  9. C.R. Martin. Science 266, 23, 1961 (1994)
  10. S.K. Chakarvarti, J. Vetter. Nucl. Instr. Meth. Phys. Res. B 62, 1, 109 (1991)
  11. J. Vetter, R. Spohr. Nucl. Instrum. Meth. Phys. Res. B 79, 1-4, 691 (1993)
  12. D. Dobrev, J. Vetter, N. Angert, R. Neumann. Appl. Phys. A 72, 729 (2001)
  13. D. Borissov, S. Isik-Uppenkamp, M. Rohwerder. J. Phys. Chem. C 113, 8, 3133 (2009)
  14. X.Y. Zhang, G.H. Wen, Y.F. Chan, R.K. Zheng, X.X. Zhang, N. Wang. Appl. Phys. Lett. 83, 16, 3341 (2003)
  15. Y.L. Sun, Y. Dai, L.Q. Zhou, W. Chen. Solid State Phenom. 121-123, 3, 17 (2007)
  16. J. Verbeeck, O.I. Lebedev, G.V. Tendeloo, L. Cagnon, C. Bougerol, G. Tourillon. J. Electrochem. Soc. 150, 10, 468 (2003)
  17. G. Tourillon, L. Pontonnier, J.P. Levy, V. Langlais. Electrochem. Solid State Lett. 3, 1, 20 (2000)
  18. J.M. Baik, M. Schierhorn, M. Moskovits. J. Phys. Chem. C 112, 7, 2252 (2008)
  19. V. Haehnel, S. Fahler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, H. Schlorb. Acta Mater. 58, 7, 2330 (2010)
  20. Y. Peng, H.L. Zhang, S.L. Pan, H.L. Lia J. Appl. Phys. 87, 10, 7405 (2000)
  21. L. Menon, M. Zheng, H. Zeng, S. Bandyopadhyay, D.J. Sellmyer. J. Electron. Mater. 29, 5, 510 (2000)
  22. K.V. Frolov, D.L. Zagorsky, I.S. Lyubutin, M.A. Chuev, I.V. Perunov, S.A. Bedin, A.A. Lomov, V.V. Artemov, S.N. Sulyanov. Pis'ma v ZhETF 105, 5, 297 (2017). (in Russian)
  23. K.V. Frolov, D.L. Zagorsky, I.S. Lyubutin, V.V. Korotkov, S.A. Bedin, S.N. Sulyanov, V.V. Artemov, B.V. Mchedlishvili. Pis'ma v ZhETF 99, 10, 656 (2014). (in Russian)
  24. D.L. Zagorsky, K.V. Frolov, S.A. Bedin, I.V. Perunov, M.A. Chuev, A.A. Lomov, I.M. Doludenko. FTT 60, 11, 2075 (2018). (in Russian)
  25. I.M. Doludenko, D.L. Zagorsky, K.V. Frolov, I.V. Perunov, M.A. Chuev, V.M. Kanevsky, H.C. Yerokhina, S.A. Bedin. FTT 62, 9, 1474 (2020). (in Russian)
  26. K.V. Frolov, M.A. Chuev, I.S. Lyubutin, D.L. Zagorskii, S.A. Bedin, I.V. Perunov, A.A. Lomov, V.V. Artemov, D.N. Khmelenin, S.N. Sulyanov, I.M. Doludenko. J. Magn. Magn. Mater. 489, 165415 (2019)
  29. M.A. Chuev. Dokl. Phys. 56, 318 (2011)
  30. M.A. Chuev, V.M. Cherepanov, M.A. Polikarpov. JETP Lett. 92, 1, 21 (2010)
  31. P. Gutlich, E. Bill, A.X. Trautwein. Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications. Springer Verlag, Berlin, Heidelberg (2011). 568 p
  32. I.S. Jacobs, C.P. Bean. Phys. Rev. 100, 1060 (1955)
  33. Y. Peng, H.L. Zhang, S.L. Pan, H.L. Li. J. Appl. Phys. 87, 10, 7405 (2000).
  34. Z. Chen, Q. Zhan, D. Xue, F. Li, X. Zhou, H. Kunkel, G. Williams. J. Phys. Condens. Matter 14, 3, 613 (2002)
  35. M.A. Chuev, V.M. Cherepanov, M.A. Polikarpov. JETP Lett. 92, 1, 21 (2010)
  36. E.C. Stoner, E.P. Wohlfarth. Philos. Trans. R. Soc. A 240, 599 (1948)
  37. A.M. Afanas'ev, M.A. Chuev, J. Hesse. Exp. Theor. Phys. 89, 533 (1999)
  38. M.A. Chuev, J. Hesse. J. Phys. Condens. Matter 19, 506201 (2007).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245