Catastrophic destruction of carbon nanotubes during degradation of field emitters
Bulyansky S. V.1, Dudin A. A.1, Lakalin A. V.1, Orlov A. P.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: bulyar2954@mail.ru

PDF
The catastrophic degradation of emission cathodes based on carbon nanotubes is simulated, which occurs due to the destruction of the nanotube in the defective region as a result of overheating. The model takes into account the heating of the nanotube by releasing Joule heat, as well as radiation and cooling due to the Notingham effect, which consists in reducing the temperature of the emitting end due to the energy carried away by the flow of emitted electrons. The proposed model is compared with an experiment on the degradation of a single nanotube. The experiment confirms the catastrophic destruction and shows that the destruction is facilitated by the occurrence of thermoelectronic emission, which causes a rapid increase in the current and, accordingly, the temperature of the defective region of the nanotube. Keywords: field emitters, degradation, nanotube heating, defects, catastrophic destruction.
  1. L.A. Chernozatonskii, Y.V. Gulyaev, Z.J. Kosakovskaja, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, E.A. Fedorov, V.P. Val'chuk. Chem. Phys. Lett. 233, 1--2, 63 (1995). https://doi.org/10.1016/0009-2614(94)01418-U
  2. W.A. de Heer, A. Ch\^atelain, D. Ugarte. Science 270, 5239, 1179 (1995). https://doi.org/10.1126/science.270.5239.1179
  3. M. Mauger, V.T. Binh. J. Vac. Sci. Technol. B 24, 2, 997 (2006). https://doi.org/10.1116/1.2179454
  4. A.P. Gupta, S. Park, S.J. Yeo, J. Jung, C. Cho, S.H. Paik, H. Park, Y.C. Cho, S.H. Kim, J.H. Shin, J.S. Ahn, J. Ryu. Materials 10, 8, 878 (2017). https://doi.org/10.3390/ma10080878
  5. S. Park, A.P. Gupta, S.J. Yeo, J. Jung, S.H. Paik, M. Mativenga, S.H. Kim, J.H. Shin, J.S. Ahn, J. Ryu. Nanomaterials 8, 6, 378 (2018). https://doi.org/10.3390/nano8060378
  6. M. Croci, I. Arfaoui, T. Stockli, A. Chatelain, J.-M. Bonard. Microelectronics J. 35, 4, 329 (2004). https://doi.org/10.1016/j.mejo.2003.07.003
  7. C. Paoloni, M. Mineo, A. Di Carlo, A.J. Durand, V. Krozer, M. Kotiranta, F. Bouamrane, T. Bouvet, S. Megtert. In: Proc. 2012 IEEE Thirteenth Int. Vacuum Electron. Conf. (IVEC). Monterey, CA, USA. 24-26.04.2012. IVEC (2012) (IEEE). P. 237-238
  8. H.Y. Yuan, X.R. Wang. Sci. Rep. 6, 22638 (2016). https://doi.org/10.1038/srep22638
  9. N.L. Rupesinghe, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga. J. Vac. Sci. Technol. B 21, 1, 338 (2003). https://doi.org/10.1116/1.1527635
  10. I. Levchenko, S. Xu, G. Teel, D. Mariotti, M.L.R. Walker, M. Keidar. Nature Commun. 9, 1, 879 (2018). https://doi.org/10.1038/s41467-017-02269-7
  11. B. Galante, G.A. Tranquille, M. Himmerlich, C.P. Welsch. J. Resta Lopez. Phys. Rev. Accel. Beams 24, 11 (2021). https://doi.org/10.1103/PhysRevAccelBeams.24.113401
  12. N.T. Hong, K.H. Koh, S. Lee, P.N. Minh, N.T.T. Tam, P.H. Khoi. J. Vac. Sci. Technol. B 27, 2, 749 (2009). https://doi.org/10.1116/1.3097850
  13. J.T.L. Thong, C.H. Oon, W.K. Eng, W.D. Zhang, L.M. Gan. Appl. Phys. Lett. 79, 17, 2811 (2001). https://doi.org/10.1063/1.1412590
  14. S.B. Fairchild, P. Zhang, J. Park, T.C. Back, D. Marincel, Z. Huang, M. Pasquali. IEEE Trans. Plasma Sci. 47, 5, 2032 (2019). https://doi.org/10.1109/TPS.2019.2900219
  15. Y. Guo, J. Wang, B. Li, Y. Zhang, S. Deng, J. Chen. Nanomaterials 12, 11, 1882 (2022). https://doi.org/10.3390/nano12111882
  16. J.H. Kim, J.S. Kang, K.C. Park. Micromachines 9, 12, 648 (2018). https://doi.org/10.3390/mi9120648
  17. J.H. Ryu, K.S. Kim, C.S. Lee, J. Jang, K.C. Park. J. Vac. Sci. Technol. B 26, 2, 856 (2008). https://doi.org/10.1116/1.2884757
  18. S.V. Bulyarskiy, A.A. Dudin, A.V. Lakalin, A.P. Orlov, A.A. Pavlov, R.M. Ryazanov, A.A. Shamanaev. Tech. Phys. 63, 6, 894 (2018). https://doi.org/10.1134/S1063784218060099
  19. J. Paulini, T. Klein, G. Simon. J. Phys. D 26, 8, 1310 (1993). https://doi.org/10.1088/0022-3727/26/8/024
  20. J.P. Hirth, G.M. Pound. Condensation and Evaporation: Nucleation and Growth Kinetics. Macmillan, N.Y. (1963). 191 p
  21. K.P. Shumsky, A.I. Myalkin, I.S. Maksimovskaya. Osnovy rascheta vakuumnoi sublimatsionnoy apparatury. Mashinostroenie, M. (1967), 224 p. (in Russian)
  22. A.A. Dudin, A.P. Orlov, E.V. Zenova, A.M. Tagachenkov. NMST 20, 9, 515 (2018). https://doi.org/10.17587/nmst.20.515-520

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru