Physics of the Solid State
Volumes and Issues
Study of Zn implanted silicon oxide films
Privezentsev V. V.1, Sergeev A. P.1, Firsov A. A.1, Kulikauskas V. S.2, Yakimov E. E.3, Kirilenko E. P.4, Goryachev A. V.4
1Federal State Institution "Federal Scientific Center Scientific Research Institute of System Analisys of the Russian Academy of Sciences", Moscow, Russia
2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
3Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia
4Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, Moscow, Russia

This paper presents the results of studying the composition, structure, and properties of amorphous SiOx film obtained by electron beam evaporation. This film was implanted by Zn ions with energy of 40 keV and a dose of 3·1016 cm2. Then, annealing was carried out in air at temperatures from 400 to 800oC with a step of 100oC for 40 min at each stage. It has been found that, after implantation, metal Zn nanoclusters with a size of about 10 nm are formed on the surface and in the near-surface layer of silicon oxide. During annealing, the implanted layer becomes enlightened, since metallic Zn gradually oxidizes to transparent phases of its oxide ZnO and silicide Zn2SiO4. After annealing at 700oC, ZnO nanoclusters and surface craters were revealed on the surface and in the subsurface layer of the SiO2 film. Keywords: silicon oxide film, electron beam evaporation, Zn implantation, thermal oxidation, nanoclusters, ZnO.
  1. M.I. Baraton. Synthesis. Functionalization, and Surface Treatment of Nanoparticles. Am. Sci., Los-Angeles (2002)
  2. T.C. Chang, K.C. Chang, T.M. Tsai, T.J. Chu, S.M. Sze. Mater. Today 19, 5, 254 (2016)
  3. C. Flytzanis, F. Haqche, M.C. Klein, D. Ricard, Ph. Roussignol. In: Prog. Opt. / Ed. E. Wolf. Amsterdam, North Holland 29, 321 (1999)
  4. C.W. Litton, T.C. Collins, D.S. Reynolds. Zinc Oxide Materials for Electronic and Optoelectronic Device Application. Wiley, Chichester (2011)
  5. S. Chu, M. Olmedo, Zh. Yang, J. Kong, J. Liu. Appl. Phys. Lett. 93, 181106 (2008)
  6. G.P. Smestad, M. Gratzel. J. Chem. Ed. 75, 752 (1998)
  7. C. Li, Y. Yang, X.W. Sun, W. Lei, X. Zhang, B. Wang, J. Wang, B. Tay, J. Ye, G. Lo. Nanotechnology 18, 135604 (2007)
  8. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, E. Goering, G. Schutz, P.B. Straumal, B. Baretzky. Phys. Rev. B 79, 205206 (2009)
  9. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K. ohd Bakhori, H. Hasan, D. Mohamad. Nano-Micro Lett. 7, 219 (2015)
  10. S. Inbasekaran, R. Senthil, G. Ramamurthy, T.P. Sastry. Intern. J. Innov. Res. Sci. Eng. Technol. 3, 8601 (2014)
  11. A. Mehonic, A.L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J.J. Yang, Q. Xia, A.J. Kenyon. Adv. Mater. 30, 43, 1801187 (2018)
  12. H. Yanqiu, L. Meidong, L. Zhen, Z. Yike, L. Shaobo. Mater. Sci. Eng. B 97, 2, 111 (2003)
  13. A. Garcia-Sotelo, M. Avila-Meza, M.A. Melendez-Lira, J.L. Fernandez-Munoz, O. Zelaya-Angel. Mater. Res. 22, 4, e201901059 (2019)
  14. T. Torchynska, B. El Filali, G. Polupan, L. Shcherbyna. MRS Adv. 2, 1 (2019)
  15. D.H. Kwon, KM. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang. Nature Nanotechnology 5, 148 (2010)
  16. G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafri a. J. Appl. Phys. 110, 124518 (2011)
  17. K. Xiong, J. Robertson, S.J. Clark. Phys. Status Solidi B 243, 2071 (2006)
  18. M.V. Ganduglia-Pirovano, A. Hofmann. J. Sauer. Surf. Sci. Rep. 62, 219 (2007)
  19. D.Z. Gao, A.-M. El-Sayed, A.L. Shluger. Nanotechnology 27, 50, 505207 (2016)
  20. N. Ilyas, C. Li, J. Wang, X. Jiang, H. Fu, F. Liu, D. Gu, Y. Jiang, W. Li. J. Phys. Chem. Lett. 13, 3, 884 (2022)
  21. E.V. Okulich, V.I. Okulich, D.I. Tetelbaum, A.N. Mikhaylov. Mater. Lett. 310, 131494 (2022)
  22. E.V. Okulich, V.I. Okulich, D.I. Tetelbaum. Tech. Phys. Lett. 46, 1, 19 (2020)
  23. K.C. Chang, T.M. Tsai, T.C. Chang, H.H. Wu, J.H. Chen, Y.E. Syu, G.W. Chang, T.J. Chu, G.R. Liu, Y.T. Su, M.C. Chen, J.H. Pan, J.Y. Chen, C.W. Tung, H.C. Huang, Y.H. Tai, D.S. Gan, S.M. Sze. IEEE Eelecron. Dev. Lett. 34, 3, 399 (2013)
  24. K.C. Chang, T.M. Tsai, T.C. Chang, H.H. Wu, K.H. Chen, J.H. Chen, T.F. Young, T.J. Chu, J.Y. Chen, C.H. Pan, J.Y. Chen, C.W. Tung, H.C. Huang, Y.H. Tai, D.S. Gan, S.M. Sze. IEEE Electron. Dev. Lett. 34, 4, 511 (2013)
  25. R. Zhang, T.M. Tsai, T.C. Chang, K.C. Chang, K.H. Chen, J.C. Lou, T.F. Young, J.H. Chen, S.Y. Huang, M.C. Chen, C.C Shih, H.L. Chen, J.H. Pan, C.W. Tung, Y.E. Syu, S.M. Sze. J. Appl. Phys. 114, 234501 (2013)
  26. J.S. Huang, W.C. Yen, S.M. Lin, C.Y. Lee, J. Wu, Z.M. Wang, T.S. Chin, Y.L. Chueh. J. Mater. Chem. C 2, 4401 (2014)
  27. V.I. Petrov. Adv. Phys. Sci. 166, 8, 859 (1996)
  28. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy / Eds D. Briggs, M.P. Sikh. Wiley, N.Y. (1983)
  29. Yu.B. Monakhova, S.P. Mushtakova. J. Anal. Chem. 67, 12, 1044 (2012).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245