Influence of Si nanocrystals on polyaniline conductivity
Grigoreva L. N.1, Ilin A. S. 1,2, Martyshov M. N. 1, Savin K. A. 2, Forsh P. A. 1,2, Kashkarov P. K. 1
1Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: ln.grigorjeva@physics.msu.ru, as.ilin@physics.msu.ru, phorsh@mail.ru, kashkarov_PK@nrcki.ru

PDF
The electrical properties of a complex of polyaniline with poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PANI-PAMPSA) and composites based on it with the addition of silicon nanocrystals (nc-Si) ranging in size from 30 nm to 100 nm are studied in this article. It was found that the dc conductivity of PANI-PAMSA decreases with the introduction of nc-Si. Investigations of alternating current showed that the frequency dependence of the conductivity of the polymer and composites based on it obeys the Jonscher law, which indicates a significant role of the hopping mechanism of conductivity. A mechanism of PANI-PAMPSA conductivity reducing by incorporation of silicon nanocrystals is proposed. The mechanism is associated with energy distribution of localized states in the band gap of the polymer changing and is independent of the nc-Si synthesis method. Keywords: polyaniline, silicon nanoparticles, conductivity, nanocomposites.
  1. G.I. Rats, M.A. Mordinova. Izv. irkutskoy gos. ekonom. akademii 2, 82, 132 (2012). (in Russian)
  2. I.I. Maronchuk, D.D. Sanikovich, V.I. Mironchuk. Izv. vuzov i energeticheskikh obedineniy SNG 62, 2, 105 (2019). (in Russian)
  3. D.H. Wang, J.K. Kim, G.-H. Lim, K.H. Park, O.O. Park, B. Lim, J.H. Park. R. Soc. Chem. Adv. 2, 7268 (2012)
  4. T.R. Salikhov. Elektrofizicheskie svoistva mnogosloinykh plyonochnykh struktur na osnove polimernykh materialov, Dis. kand. fiz.-mat. nauk, Bashkir State University (2016). (in Russian)
  5. G. Li, R. Zhu, Y. Yang. Polymer Solar Cells, Nature Photon 6, 153 (2012)
  6. I.A. Lobov, N.A. Davletkildeev, D.V. Sokolov. Omskiy nauch. vestn. 4, 148 (2016). (in Russian)
  7. S. Palaniappan, A. John. Prog. Polym. Sci. 33, 7, 732 (2008)
  8. O.L. Gribkova, A.A. Nekrasov, M. Trchova, V.F. Ivanov, V.I. Sazikov, A.B. Razova, V.A. Tverskoy, A.V. Vannikov. Polymer 52, 2474 (2011)
  9. O.D. Omelchenko, O.L. Gribkova, A.R. Tameev, S.V. Novikov, A.V. Vannikov. Prot. Met. Phys. Chem. Surf. 50, 613 (2014)
  10. O.D. Iakobson, O.L. Gribkova, A.A. Nekrasov, V.A. Tverskoi, V.F. Ivanov, P.V. Melenikov, E.A. Polenov, A.V. Vannikov. Prot. Met. Phys. Chem. Surfaces 52, 1005 (2016)
  11. O.L. Gribkova, A.A. Nekrasov, V.A. Cabanova, T.V. Krivenko, N.V. Nekrasova, S.A. Yakovlev, E.I. Terukov, A.R. Tameev. Chem. Papers 72, 1741 (2018)
  12. O.D. Iakobson, O.L. Gribkova, A.R. Tameev, A.A. Nekrasov, D.S. Saranin, C.A. Di. J. Ind. Eng. Chem. 65, 309 (2018)
  13. Y. Maximenko, N. Elhalawany, K. Mantey, Z. Yamani, S.-T. Yau, Munir H. Nayfeh. Mater. Res. Soc. Symp. Proc. 1500 (2013)
  14. O.D. Yakobson, O.L. Gribkova, A.A. Nekrasov, V.A. Tverskoy, V.F. Ivanov, P.V. Melnikov, E.A. Polenov, A.V. Vannikov. Fizikokhimiya poverkhnosti i zashchita materialov, 52 613 (2016). (in Russian)
  15. K. Savin, P. Forsh, E. Forsh, A. Kazanskii. Appl. Phys. Lett. 118, 183302 (2021)
  16. A.K. Jonscher. Thin Solid Films 1, 3, 213 (1967)
  17. M. Brodski. Amorfnye poluprovodniki, Mir, M., (1982),
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru