Evolution of structural defects of SiO2-TiO2 glasses with a change in TiO2 concentration from zero to phase separation
Shcherbakov I. P.1, Narykova M. V.1, Chmel A. E.1
1Ioffe Institute, St. Petersburg, Russia
Email: chmel@mail.ioffe.ru

The thermal expansion coefficient (TEC) of binary glasses SiO2-TiO2 decreases as the TiO2 concentration grows. At concentration of TiO2 in the range of 4-6 mol% (in dependence of the applied synthesis method) TEC becomes negative; at concentration of 8-11 mol% devitrification occurs. A combination of photoluminescence (PL) and IR reflection techniques were applied for studying the evolution of point and structural defects in the range of TiO2 concentration from zero to phase separation. The precision measurements of density showed its drop at TiO2 content of 7.9 mol% thus evidencing the conversion of glass into a polycrystalline substance consisting of SiO2 and TiO2 crystallites. In the TiO2 concentration range of compatibility of oxides, an ensemble of point defects comprises =SiO-Si= and =Ti-O- centers as well as =Si-Si= and =Si-Ti= neutral oxygen-vacancies. At the dopant concentration specific for phase separation (TiO2 7.9 mol%), the PL-active groups of =Si-Ti= go away, while the IR-detectable Si-O-Ti bridges remain stable. Keywords: SiO2-TiO2 glass, point defects, structural defects, photoluminescence, IR spectroscopy.
  1. A. Matsuda. J. Ceram. Soc. Jpn. 130, 143 (2022)
  2. S.Kh. Suleimanov, V.G. Dyskin, M.U. Dzhanklych, N.A. Kulagina. Techn. Phys. Lett. 39, 305 (2013)
  3. G. Henderson, X. Liu, M. Fleet. Phys. Chem. Miner. 29, 32 (2002)
  4. B.O. Mysen, P. Richet. Silicate glasses and melts: properties and structure. V. 10, Elsevier Science B, Amsterdam (2005). P. 544
  5. W.T. Minehan, M.R. Schaefer, G.L. Brass. J. Non-Cryst. Solids 147- 148, 582 (1992)
  6. D.L. Evans. J. Am. Ceram. Soc. 53, 418 (1970)
  7. P.C. Schultz. J. Am. Ceram. Soc. 59, 214 (1976)
  8. J. Shelby. Phys. Chem. Glasses 46, 494 (2005)
  9. G. Scannell. PhD Thesis. L'Universite de Rennes 1. (2016). P. 28
  10. M.H. Manghnani, Q. Williams, T. Matsui, P.C. Schultz, C.R. Kurkjian. Minerals 10, 481 (2020)
  11. G. Scannell, D. Laille, F. Celarie, L. Huang, T. Rouxel. Front. Mater. 4. Article 6 (2017)
  12. K. Kamiya, S. Sakka. J. Non-Cryst. Solids 52, 357 (1982). [13Ch. Jin, V. Liu, Zh, Lei. J. Sun. Nanoscale Res. Lett. Article 95 (2015)
  13. F. Flores, M. Aceves, C. Dominguez, C. Falcony. Rev. Superficies Vaci o. 18, 7 (2005)
  14. J.-Y. Zhang, X.-M. Bao, N.-Sh. Li, H.-Z. Song. J. App. Phys. 83, 3609 (1998)
  15. Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk. Phys. Rev. B 64, 085421 (2001)
  16. D.I. Tetelbaum, O.N. Gorshkov, A.V. Ershov, P. Kasatkin, V.A. Kamin, A.N. Mikhaylov. Thin Sol. Films 515, 333 (2006)
  17. L. Vaccaro, M. Cannas, V. Radzig. J. Non-Cryst. Solids 355, 1020 (2009)
  18. G. Henderson, M. Fleet. Can. Mineral. 33, 399 (1995)
  19. V. Sokolov, V. Plotnichenko, E. Dianov, Neorgan. materialy 42, 1393 (2006) (in Russian)
  20. P.H. Gaskell, D.W. Johnson. J. Non-Cryst. Solids 20, 171 (1976)
  21. K. Fukumi, A. Chayahara, M. Satou, J. Hayakawa, M. Hangyo, Sh.-I. Nakashima. Jpn J. Appl. Phys. 29, Part 1, 905 (1990)
  22. T. Zhua, J. Lib, X. Linc. S. Yipc. Stress-dependent molecular pathways of silica-water reaction. J. Mech. Phys. Solids 2005, 53, 1597-1623
  23. D.S. Knight, C.G. Pantano, W.B. White. J. Non-Cryst. Solids 6, 156 (1989)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru