Magnetostructural features of phase transitions in the Mn1-xCoxNiGe system Part 2. Analysis
Mitsiuk V.I.1, Rimskiy G.S.1, Koledov V.V. 2, Mashirov A.V. 2, Val'kov V.I. 3, Golovchan A.V. 3, Kovalev O.E.3
1Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
3Donetsk Institute for Physics and Engineering, Donetsk, Ukraine

Within the framework of the model of interacting parameters of the magnetic and structural orders, taking into account the internal periodic magnetic field orthogonal to the exchange field, we analyzed the features of magnetostructural transitions in the Mn1-xCoxNiGe system. A qualitative description of changes in the nature of magnetic phase transitions from magnetostructural transitions of the 1st order paramagnetism-antiferromagnetism (x=0.05-0.1) to isostructural transitions of the 2nd order paramagnetism-ferromagnetism (x=0.15-0.8) with a change in the concentration of Co is presented. An explanation is given for the onset of irreversible magnetic-field-induced transitions at temperatures on the order of 5 K in strong magnetic fields, accompanied by a change in the saturation magnetization for samples x=0.15-0.8. The low-temperature inverse magnetocaloric effect at liquid helium temperatures is predicted for these samples. Keywords: irreversible magnetostructural first-order phase transition, helimagnetism, direct and inverse magnetocaloric effects.
  1. V.I. Val'kov, A.V. Golovchan, V.V. Koledov, V.I. Mityuk, I.F. Gribanov, V.D. Zaporozhets, B.M. Todris, T.S. Sivachenko. FTVD 29, 5 (2019) (in Russian)
  2. V.I. Val'kov, A.V. Golovchan, V.V. Koledov, B.M. Todris, V.I. Mityuk. FTT 62, 5, 710 (2020) (in Russian)
  3. R. Blints, B. Zheksh. Ferroelectrics and antiferroelectrics. Lattice dynamics, Mir, M. (1975). 398 p
  4. J.-T. Wang, D.-S. Wang, C. Chen, O. Nashima, T. Kanomata, H. Mizuseki, Y. Kawazoe. Appl. Phys. Lett. 89, 262504 (2006)
  5. B. Penc, A. Hoser, S. Baran, A. Szytu a. Phase Transit. 91, 118 (2018)
  6. E.K. Liu, H.G. Zhang, G.Z. Xu, X.M. Zhang, R.S. Ma. Appl. Phys. Lett. 102, 122405 (2013)
  7. V.I. Mityuk, G.S. Rimskiy, V.V. Koledov, A.V. Mashirov, V.I. Val'kov, A.V. Golovchan, O.E. Kovalev. FTT 63, 12, 2021 (in Russian)
  8. S.K. Asadov, E.A. Zavadsky, V.I. Kamenev, E.P. Stefanovsky, A.L. Sukstansky, B.M. Todris. FTT 42, 9, 1649 (2000) (in Russian)
  9. V.I. Val'kov, A.V. Golovchan. FNT 39, 904 (2013) (in Russian)
  10. S.V. Tyablikov. Metody kvantovoi teorii magnetizma, Nauka, M. (1975). 528 p. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245