Influence of thermoinduced magnetoelastic effect on domain structure of planar Ni microparticles
Nurgazizov N. I. 1, Bizyaev D. A. 1, Bukharaev A. A. 1, Chuklanov A. P. 1, Shur V. Ya. 2, Akhmatkhanov A. R. 2
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
2Institute of Natural Sciences and Mathematics, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia

Results of studying the domain structure of planar Ni microparticles formed on single-crystal substrates from the lithium niobate and from the potassium titanyl phosphate at different temperatures are presented. The dependence of domain sizes on the sample temperature was studied. It is shown the observed change of the domain structure is caused by the magnetoelastic effect, which arises due to the difference in the thermal expansion coefficients of the substrate and microparticles as the sample temperature changes. It is shown, the sizes of magnetic domains, up to the creation of a state with a quasi-homogeneous magnetization may be set by the substrate temperature during the microparticles formation. Keywords: magnetoelastic effect, magnetic force microscopy, remagnetization, lithium niobate, potassium titanyl phosphate, temperature.
  1. K. Roy, S. Bandyopadhyay, J. Atulasimha. Appl. Phys. Lett. 99, 63108 (2011)
  2. M. Barangi, P. Mazumder. IEEE Nanotechnol. Mag. 9, 3, 15 (2015)
  3. J. Atulasimha, S. Bandyopadhyay. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing. WILEY (2016). 352 c
  4. A.A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Yu.K. Fetisov. Phys. Usp. 61, 1175 (2018)
  5. S. Bandyopadhyay, J. Atulasimha, A. Barman. Appl. Phys. Rev. 8, 041323 (2021)
  6. S. Finizio, M. Foerster, M. Buzzi, B. Kruger, M. Jourdan, C.A.F. Vaz, J. Hockel, T. Miyawaki, A. Tkach, S. Valencia, F. Kronast, G.P. Carman, F. Nolting, M. Klaui1. Phys. Rev. Appl. 1, 021001 (2014)
  7. A. Chen, Y. Zhao, Y. Wen, L. Pan, P. Li, X. Zhang. Sci. Adv. 5, 12, eaay5141 (2019)
  8. I. Nurgazizov, D.A. Bizyaev, A.A. Bukharaev, A.P. Chuklanov. Phys. Solid State 62, 1667 (2020)
  9. D.A. Bizyaev, A.A. Bukharaev, N.I. Nurgazizov, A.P. Chuklanov, S.A. Migachev. Phys. Status Solidi Rapid Res. Lett. 2000256 (2020)
  10. N.I. Nurgazizov, D.A. Bizyaev, A.A. Bukharaev, A.P. Chuklanov, V.Ya. Shur, A.R.. Akhmatkhanov. Phys. Solid State 63, 1427 (2021)
  11. A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky and others. Physical quantities: Handbook / Ed. by I.S. Grigoriyev, Ye.Z. Meylikhov. Energoatomizdat, M. (1991), 1232 p. (in Russian)
  12. K.P. Belov. Magnitostriktsionniye yavleniya i ikh tekhnicheskiye prilozheniya. Nauka, M. (1987). 160 s. (in Russian)
  13. U. Hartmann. Annu. Rev. Mater. Sci. 29, 53 (1999)
  14. M.J. Donahue, D.G. Porter. OOMMF User's Guide, Version 1.0. Natl. Inst. Standards Technol., Gaithersburg, MD, USA (1999).
  15. D.V. Ovchinnikov, A.A. Bukharayev. Tech. Phys. 46, 1014 (2001)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245