Effect of surface and interfaces on longitudinal thermal transport in thin-film Si/Ge structures
Khamets A. L.1, Khaliava I. I.1, Safronov I. V.2, Filonov A. B.1, Migas D. B. 1,3
1Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
2Belarusian State University, Minsk, Republic of Belarus
3National Research Nuclear University “MEPhI”, Moscow, Russia
Email: infuze193@gmail.com, kholyavo.ivan@gmail.com, fiz.safronov@mail.ru, filonovab1@mail.ru, migas@bsuir.by

PDF
One of the main approaches to increase the thermoelectric figure of merit of materials is to reduce their thermal conductivity and, in this respect, the surface and possible interfaces play an important role in low-dimensional structures. By means of nonequilibrium molecular dynamics simulations at 300 K we investigate the longitudinal phonon thermal conductivity in Si/Ge multilayered thin-film structures having sharp interfaces and (100), (110), (111) crystallographic orientations with respect to the number of Si/Ge periods (or film thickness) and in comparison with Ge films of equivalent thickness. It is shown that as the thickness of the Si/Ge layered film decreases from ~50 to 1 nm and heat flux propagates along the [110] direction, significant phonon-surface scattering occurs for the (100) orientation, which leads to a decrease in the phonon thermal conductivity by almost a factor of 4 (from 19.1 to 5.12 W/(m · K)) and to insignificant change (~22±1 W/(m · K)) for the (110) and (111) orientations. In comparison with the Si/Ge films, the Ge films of equivalent thickness display a qualitative and quantitative agreement indicating the scattering of phonons at the Si/Ge interface to be balanced by the higher thermal conductivity of the Si layers. Keywords: phonon thermal conductivity, thin-films, layered structures, silicon and germanium, molecular dynamics.
  1. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka. Science 321, 5888, 554 (2008)
  2. L. Hu, T. Zhu, X. Liu, X. Zhao. Adv. Func. Mater. 24, 33, 5211 (2014)
  3. Y. Pei, A. LaLonde, S. Iwanaga, G. Jeffrey Snyder. Energy Environ. Sci. 4, 6, 2085 (2011)
  4. A.D. LaLonde, Y. Pei, G. Jeffrey Snyder. Energy Environ. Sci. 4, 6, 2090 (2011)
  5. Pierre F.P. Poudeu Dr., J. D'Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis. Angewandte Chem. Int. Ed. 45, 23, 3835 (2006)
  6. G. Tan, F. Shi, S. Hao, Li-Dong Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, Vinayak P. Dravid Mercouri G. Kanatzidis. Nature Commun. 7, 12167 (2016)
  7. Li-Dong Zhao, Shih-Han Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis. Nature 508, 373 (2014)
  8. T.H. Geballe, G.W. Hill. Phys. Rev. 98, 4, 940 (1955)
  9. A.F. Ioffe. Can. J. Phys. 34 (12A), 1342 (1956)
  10. V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov, A.V. Tikhomirov, G.E. Popov, E. Haller, K. Itoh. J. Exp. Theor. Phys. Lett. 63, 490 (1996)
  11. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers. J. Appl. Phys. 35, 10, 2899 (1964)
  12. V. Kessler, D. Gautam, T. Hulser, M. Spree, R. Theismann, M. Winterer, H. Wiggers, G. Schierning, R. Schmechel. Adv. Eng. Mater. 15, 5, 379 (2012)
  13. C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, P.D. Gorsuch. J. Appl. Phys. 69, 8, 4333 (1991)
  14. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren. Appl. Phys. Lett. 93, 19, 193121 (2008)
  15. S. Bathula, M. Jayasimhadri, N. Singh, A.K. Srivastva, J. Pulikkotil, A. Dhar, R.C. Budhani. Appl. Phys. Lett. 101, 21, 213902 (2012)
  16. A. Yusufu, K. Kurosaki, Y. Miyazaki, M. Ishimaru, A. Kosuga, Y. Ohishi, H. Muta, S. Yamanaka. Nanoscale 6, 22, 13921 (2014)
  17. R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, N. Navaneethan, Y. Hayakawa, D.K. Aswai, S.K. Gupta. J. Mater. Chem. A 2, 19, 6922 (2014)
  18. A.F. Ioffe. Poluprovodnikovyie termoelementy. Izd-vo AN SSSR, M, (1956) (in Russian) 103 s
  19. J.A. Perez-Taborda, O. Caballero-Calero, M. Marti n-Gonzalez. New Research on Silicon --- Structure, Properties, Technology. InTechOpen. London. (2017). P. 183
  20. C. Jeong, S. Datta, M. Lundstorm. J. Appl. Phys. 111, 9, 093708 (2012)
  21. N.S. Bennett, N.M. Wight, S.R. Popuri, Jan-Willem G. Bos. Nano Energy 16, 350 (2015)
  22. S.-M. Lee, David G. Cahill, R. Venkatasubramanian. Appl. Phys. Lett. 70, 22, 2957 (1997)
  23. T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, David W. Song, C.D. Moore, G. Chen, Kang L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, M.S. Dresselhaus. Superlat. Microstruct. 28, 3, 199 (2000)
  24. W.L. Liu, T. Borca-Tasciuc, G. Chen, J.L. Liu, K.L. Wang. J. Nanosci. Nanotechnology 1, 1, 39 (2001)
  25. S. Chakraborty, C. A. Kleint, A. Heinrich, C.M. Schneider, J. Schumann, M. Falke, S. Teichert. Appl. Phys. Lett. 83, 20, 4184 (2003)
  26. E.S. Landry, A.J.H. Mc Gaughey. Phys. Rev. B 79, 7, 075316 (2009)
  27. J. Grag, G. Chen. Phys. Rev. B 87, 14, 140302 (2013)
  28. Keng-Hua Lin, A. Strachan. Phys. Rev. B 87, 11, 115302 (2013)
  29. Z. Aksamija, I. Knezevic. Phys. Rev. B 88, 15, 155318 (2013)
  30. K. Kothari, M. Maldovan. Sci. Rep. 7, 5625 (2017)
  31. H. Dong, B. Wen, Y. Zhang, R. Melnik. RSC Advances 7, 48, 29959 (2017)
  32. A. Kandemir, A. Ozden, T. Cagin, C. Sevik. Sci. Technol. Adv. Mater. 18, 1, 187 (2017)
  33. G.P. Srivastava, Lorwerth O. Thomas. Nanomaterials 10, 673 (2020)
  34. J. Yan, H. Wei, H. Xie, X. Gu, H. Bao. ES Energy Environment 8, 56 (2020)
  35. V. Samvedi, V. Tomar. J. Appl. Phys. 105, 1, 013541 (2009)
  36. A. Malhotra, K. Kothari, M. Maldovan. J. Appl. Phys. 125, 4, 044304 (2019)
  37. P. Heino. Eur. Phys. J. B 60, 171 (2007)
  38. Z. Aksamija, I. Knezevic. Phys. Rev. B 82, 4, 045319 (2010)
  39. H. Karamitaheri, N. Neophytou, H. Kosina. J. Appl. Phys. 113, 20, 204305 (2013)
  40. X. Zhang, X. Wu. Comput. Mater. Sci. 123, 40 (2016)
  41. Z.H. Wang, M.J. Ni. Heat Mass Transfer 47, 449 (2011)
  42. B. Voigtlander. Surface Sci. Rep. 43, 5-8, 127 (2001)
  43. Jmol: an open-source Java viecer for chemical structures in 3D. http://www.jmol.org/
  44. A. Stukowski. Mod. Simul. Mater. Sci. Eng. 18, 015012 (2009)
  45. S. Plimpton. J. Comp. Phys. 117, 1 (1995)
  46. J. Tersoff. Phys. Rev. B 39, 8, 5566 (1989)
  47. Y. He, I. Savic, D. Donadio, G. Galli. Phys. Chem. Chem. Phys. 14, 47, 16209 (2012)
  48. Z. Wang. Mater. Today Commun. 22, 100822 (2020)
  49. A. Giri, Jeffrey L. Braun, Patrick E. Hopkins. J. Appl. Phys. 119, 23, 235305 (2016)
  50. Y.S. Ju, K.E. Goodson. Appl. Phys. Lett. 74, 20, 3005 (1999)
  51. X. Wang, B. Huang. Sci. Rep. 4, 6399 (2014)
  52. H.R. Shanks, P.D. Maycock, P.H. Sidles, G.C. Danielson. Phys. Rev. 130, 5, 1743 (1963)
  53. W.S. Capinski, H.J. Maris. E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, E. Gmelin. Appl. Phys. Lett. 71, 15, 2109 (1997).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru