Ab initio calculations of electronic properties and charge transfer in Zn1-xCuxO with wurtzite structure
Asadov M. M.1,2, Mustafaeva S. N.3, Guseinova S. S.3, Lukichev V. F.4
1Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiyev, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
2Scientific research institute of Geotechnological Problems of Oil, Gas and Chemistry, Baku, Azerbaijan
3Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
4Valiev Institute of Physics and Technology of RAS, Moscow, Russia
Email: mirasadov@gmail.com

The results of studying the electronic structure and the influence of the local environment of the copper impurity on the properties and magnetic moment in supercells in Zn1-xCuxO are presented. DFT calculations were carried out in the local electron density (LDA) and generalized gradient approximation (GGA). The band structure of in Zn1-xCuxO was calculated taking into account the correction for spin polarization and the strong electronic interaction. DFT LSDA + U and SGGA + U (U is the Coulomb interaction) calculations made it possible to take into account the contributions of the 3d shells of the Zn and Cu cations to the band spectrum of in Zn1-xCuxO. The introduction of copper into the ZnO lattice leads to a change in the impurity and valence bands of in Zn1-xCuxO. In this case, the bottom of the in Zn1-xCuxO conduction band shifts towards low energies. The total density of electronic states of in Zn1-xCuxO near the Fermi level is mainly determined by the 3d states of Zn and Cu and the 2p state of oxygen. ZnO doped with copper acquires a magnetic moment. The introduction of a vacancy into a supercell in Zn1-xCuxO noticeably changes the local magnetic moment. As the copper concentration in Zn1-xCuxO (x=0, 0.01, and 0.02) increases, the conductivity of the samples in both constant and alternating current increased, and the activation energy of conduction decreased. Keywords: ZnO, copper doping, density functional theory, band calculations, electronic structure, localized magnetic moment, defect formation energies, Zn1-xCuxO, charge transfer, parameters of localized states.
  1. J. He. Metal Oxide Varistors (From Microstructure to Macro-Characteristics). Wiley-VCH Verlag GmbH \& Co. KGaA (2019). 465 p. ISBN: 9783527333820
  2. A. Janotti, C.G. Van de Walle. Rep. Prog. Phys. 72, 12, 126501 (2009). http://dx.doi.org/10.1088/0034-4885/72/12/126501
  3. H. Morko c, U. Ozgur. Zinc Oxide. Fundamentals, Materials and Device Technologydoi. Wiley-VCH Verlag GmbH \& Co. KGaA (2009). 477 p. ISBN: 9783527408139
  4. E.C. Lee, K.J. Chang. Phys. Rev. B 70, 11, 115210 (2004). http://dx.doi.org/10.1103/physrevb.70.115210
  5. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte. Sens Actuators A 189, 399 (2013). http://dx.doi.org/10.1016/j.sna.2012.09.006
  6. B. Kulyk, B. Sahraoui, V. Figa, B. Turko, V. Rudyk, A. Kapustiansky. J. Alloys Compd. 481, 819 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.03.117
  7. Y. Yan, M.M. Al-Jassim, S.H. Wei. Appl. Phys. Lett. 89, 181912 (2006). http://dx.doi.org/10.1063/1.2378404
  8. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte. Sensors Actuators A 189, 399 (2013). http://dx.doi.org/10.1016/j.sna.2012.09.006
  9. S.A. Ahmed. J. Mater. Sci. Mater. Electron. 28, 3733 (2017). http://dx.doi.org/10.1007/s10854-016-5981-4
  10. X. Longgong, L. Zhihong, Taskinen, P. Antero. Ceram. Int. 42, 4, 5418 (2016). http://dx.doi.org/10.1016/j.ceramint.2015.12.082
  11. C.G. Van de Walle, D.B. Laks, G.F. Neumark, S.T. Pantelides. Phys. Rev. B: Condens. Matter. 47, 15, 9425 (1993). http://dx.doi.org/10.1103/physrevb.47.9425
  12. Z. Ma, F. Ren, X. Ming, Y. Long, A.A. Volinsky. Mater. 12, 196 (2019). http://dx.doi.org/10.3390/ma12010196
  13. M.F. Manzoor, E. Ahmad, M. Ullah, A.M. Rana, A.S. Malik, M. Farooq, I. Ahmad, M. Hasnain, Z.A. Shah, W.Q. Khan, U. Mehtab. Acta Phys. Pol. A 135, 3, 458 (2019). http://dx.doi.org/10.12693/APhysPolA.135.458
  14. X. Chuanhui, W. Feng, H. Chunlian. J. Alloys Compd. 589, 604 (2014). http://dx.doi.org/10.1016/j.jallcom.2013.11.066
  15. G.J. Chen, S.R. Jian, J.Y. Juang. Coatings 8, 266 (2018). http://dx.doi.org/10.3390/coatings8080266
  16. N.M. Alatawi, L. Ben Saad, L. Soltane, A. Moulahi, I. Mjejri, F. Sediri. Polyhedron 197, 115022 (2021). https://doi.org/10.1016/j.poly.2021.115022
  17. F.Y. Ran, M. Tanemura, Y. Hayashi, T. Hihara. J. Cryst. Growth 311, 17, 4270 (2009). http://dx.doi.org/10.1016/j.jcrysgro.2009.07.008
  18. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura, J.S. Chen.Appl. Phys. Lett. 903, 032509 (2007). http://dx.doi.org/10.1063/1.2433028
  19. C. Lausecker, B. Salem, X. Baillin, O. Chaix-Pluchery, H. Roussel, S. Labau, B. Pelissier, E. Appert, V. Consonni. Inorg. Chem., Am. Chem. Soc. 60, 3, 1612 (2021). 10.1021/acs.inorgchem.0c03086ff.ffhal-03131100
  20. M. Willander. Zinc Oxide Nanostructures: Advances and Applications. CRC Press (2014). 232 p. ISBN: 9789814411349
  21. M.M. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev, D.B. Tagiev. Phys. Solid State 63, 5, 797 (2021). https://doi.org/10.1134/S1063783421050036
  22. M.M. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev. Phys. Solid State 62, 11, 2224 (2020). https://doi.org/10.1134/S1063783420110037
  23. J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204
  24. S.N. Mustafaeva, M.M. Asadov, A.A. Ismailov. Phys. Solid State 51, 11, 2269 (2009)
  25. C.G. Van de Walle. Physica B 308--310, 899 (2001)
  26. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dov gan, V. Avrutin, C.J. Cho, H.A. Morko c. J. Appl. Phys. 98, 4, 041301-0 (2005). https://doi.org/10.1063/1.1992666
  27. G. Job, R. Ruffler. Physikalische Chemie. Studienbucher Chemie. Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature, 2021. ISBN: 978-3-658-32935-8
  28. M. Pollak. Phil. Mag. 23, 519 (1971). https://doi.org/10.1080/14786437108216402
  29. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. OUP Oxford (2012). 590 p. ISBN: 9780199645336
  30. S.N. Mustafaeva, M.M. Asadov, S.S. Guseinova, A.I. Dzhabarov, V.F. Lukichev. Phys. Solid State 64, 4, 423 (2022)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru