Вышедшие номера
Landau-level quantization of the yellow excitons in cuprous oxide
Переводная версия: 10.1134/S1063783418080103
Heckotter J.1, Thewes J.1, Frohlich D.1, Abmann M.1, Bayer M.1,2
1Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany
2Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: manfred.bayer@tu-dortmund.de
Выставление онлайн: 20 июля 2018 г.

Lately, the yellow series of P-excitons in cuprous oxide could be resolved up to the principal quantum number n=25. Adding a magnetic field, leads to additional confinement normal to the field. Thereby, the transition associated with the exciton n is transformed into the transition between the electron and hole Landau levels with quantum number n, once the associated magnetic length becomes smaller than the related exciton Bohr radius. The magnetic field of this transition scales roughly as n-3. As a consequence of the extended exciton series, we are able to observe Landau level transitions with unprecedented high quantum numbers of more than 75. Acknowledgements. We gratefully acknowledge the support of this project by the Deutsche Forschungsgemeinschaft in the frame of the ICRC TRR 160 (project A1) and the project AS 459/1-3. MB also acknowledges support by the RF Government Grant No. 14.Z50.31.0021.
  1. M. Grundmann. The Physics of Semiconductors. Springer, Berlin (2016), and references therein
  2. C.F. Klingshirn. Optics. Springer, Berlin (2012), and references therein
  3. The squeezing of the wavefunction leads also to an enhancement of the exciton binding energy, which can be roughly estimated by the separation between electron and hole in high magnetic field, given by the magnetic length c (see text). This leads to a scaling of the Coulomb interaction with magnetic field as sqrt(B)sqrt, increasing more weakly than the Landau level energies
  4. E.F. Gross, N.A. Karrjew. Dokl. Akad. Nauk SSSR 84, 471 (1952)
  5. E.F. Gross. Il Nuovo Cimento 4, 672 (1956)
  6. T. Kazimierczuk, D. Frohlich, S. Scheel, H. Stolz, M. Bayer. Nature (London) 514, 343 (2014)
  7. J. Heckotter, M. Freitag, D. Frohlich, M. Abmann, M. Bayer, M.A. Semina, M.M. Glazov. Phys. Rev. B 96, 125142 (2017)
  8. M. Abmann, J. Thewes, D. Frohlich, M. Bayer, Nature Mater. 15, 741 (2016); M. Freitag, J. Heckotter, M. Bayer, M. Abmann. Phys. Rev. B 95, 155204 (2017)
  9. H.-G. Schuster. Deterministisches Chaos. VCH, Weinheim (1994)
  10. F. Haake, Quantum Signatures of Chaos. Springer, Berlin (2010)
  11. F. Schweiner, J. Main, G. Wunner. Phys. Rev. Lett. 118, 046401 (2017); F. Schweiner, P. Rommel, J. Main, G. Wunner. Phys. Rev. B 96, 035207 (2017)
  12. J. Brandt, D. Frohlich, C. Sandfort, M. Bayer, H. Stolz, N. Naka. Phys. Rev. Lett. 99, 217403 (2007)
  13. J. Heckotter, M. Freitag, D. Frohlich, M. Abmann, M. Bayer, M.A. Semina, M.M. Glazov. Phys. Rev. B 95, 035210 (2017); F. Schweiner, J. Main, G. Wunner, M. Freitag, J. Heckotter, C. Uihlein, M. Abmann, D. Frohlich, M. Bayer. Phys. Rev. B 95, 035202 (2017)
  14. Ch. Uihlein, D. Frohlich, R. Kenklies. Phys. Rev. B 23, 2731 (1981)
  15. J. Thewes, J. Heckotter, T. Kazimierczuk, M. Abmann, D. Frohlich, M. Bayer, M.A. Semina, M.M. Glazov. Phys. Rev. Lett. 115, 027402 (2015)
  16. F. Schone, S.-O. Kruger, P. Grunwald, H. Stolz, S. Scheel, M. Abmann, J. Heckotter, J. Thewes, D. Frohlich, M. Bayer. Phys. Rev. B 93, 075203 (2016)
  17. F. Schweiner, J. Main, M. Feldmaier, G. Wunner, C. Uihlein. Phys. Rev. B 93, 195203 (2016)
  18. E.F. Gross, B.P. Zakharchenya, N.M. Reinov. Dokl. Akad. Nauk SSSR 97, 57 (1954)
  19. V.T. Agekyan. Phys. Status Solidi A 43, 11 (1977)
  20. L. Vina, M. Potemski, W. Wang. Phys.-Usp. 41, 153 (1998)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.