Вышедшие номера
First-principles investigation of mechanical and thermodynamic properties of nickel silicides at finite temperature *
Переводная версия: 10.1134/S1063783418050360
Wen Zhiqin1, Zhao Yuhong1, Hou Hua1, Chen Liwen1
1School of Materials Science and Engineering, North University of China, Taiyuan, China
Email: zhaoyuhong@nuc.edu.cn
Поступила в редакцию: 19 октября 2017 г.
Выставление онлайн: 19 апреля 2018 г.

First-principles calculations are performed to investigate lattice parameters, elastic constants and 3D directional Young's modulus E of nickel silicides (i. e. beta-Ni3Si, delta-Ni2Si, theta-Ni2Si, varepsilon-NiSi, and alpha-NiSi2), and thermodynamic properties, such as the Debye temperature, heat capacity, volumetric thermal expansion coefficient, at finite temperature are also explored in combination with the quasi-harmonic Debye model. The calculated results are in a good agreement with available experimental and theoretical values. The five compounds demonstrate elastic anisotropy. The dependence on the direction of stiffness is the greatest for delta-Ni2Si and theta-Ni2Si, when the stress is applied, while that for beta-Ni3Si is minimal. The bulk modulus B reduces with increasing temperature, implying that the resistance to volume deformation will weaken with temperature, and the capacity gradually descend for the compound sequence of beta-Ni3Si>delta-Ni2Si> theta-Ni2Si>varepsilon-NiSi>alpha-NiSi2. The temperature dependence of the Debye temperature ThetaD is related to the change of lattice parameters, and ThetaD gradually decreases for the compound sequence of varepsilon-NiSi>beta-Ni3Si>delta-Ni2Si >theta-Ni2Si>alpha-NiSi2. The volumetric thermal expansion coefficient alphaV, isochoric heat capacity Cv and isobaric heat capacity Cp of nickel silicides are proportional to T3 at low temperature, subsequently, alphaV and Cp show modest linear change at high temperature, whereas Cv obeys the Dulong-Petit limit. In addition, beta-Ni3Si has the largest capability to store or release heat at high temperature. From the perspective of solid state physics, the thermodynamic properties at finite temperature can be used to guide further experimental works and design of novel nickel-silicon alloys.
  1. L.J. Chen. Silicide technology for integrated circuits. The Institution of Electrical Engineers. London (2004)
  2. W. Lee, J. Lee, J.D. Bae, C.S. Byun, D.K. Kim. Scripta Mater. 44, 97 (2001)
  3. D. Ma, D.Z. Chi, M.E. Loomans, W.D. Wang, A.S.W. Wong, S.J. Chua. Acta Mater. 54, 4905 (2006)
  4. M. Guihard, P. Turcotte-Tremblay, S. Gaudet, C. Coi a, S. Roorda, P. Desjardins, C. Lavoie, F. Schiettekatte. Nucl. Instrum. Meth. B 267, 1285 (2009)
  5. A. Mondon, M.N. Jawaid, J. Bartsch, M. Glatthaar, S.W. Glunz. Sol. Energ. Mater. Sol. C 117, 209 (2013)
  6. P.L. Tam, Y. Cao, U. Jelvestam, L. Nyborg. Surf. Coat. Tech. 206, 1160 (2011)
  7. O. Cojocaru-Miredin, D. Mangelinck, D. Blavette. J. Appl. Phys. 108, 033501 (2010)
  8. S.Yu. Turishchev, E.V. Parinova, F. Kronast, R. Ovsyannikov, N.V. Malashchenok, E.A. Streltsov, D.K. Ivanov, A.K. Fedotov. Phys. Solid State, 56, 1916 (2014)
  9. W.H. Lee, C.S. Byun, S.H. Lee, D.K. Kim. Met. Mater. Trans. A 32, 805 (2001)
  10. M. Beregovsky, A. Katsman, E.M. Hajaj, Y.E. Yaish. Solid-State Electron. 80, 110 (2013)
  11. X. Fan, H. Zhang, N. Du, D. Yang. Mater. Res. Bull. 47, 3797 (2012)
  12. X. Chen, J. Guan, G. Sha, Z. Gao, C.T. Williams, C. Liang. RSC Adv. 4, 653 (2014)
  13. M. Seita, M. Volpi, S. Patala, I. McCue, C.A. Schuh, M.V. Diamanti, J. Erlebacher, M.J. Demkowicz. Comput. Mater. 2, 16016 (2016)
  14. R. Tomita, H. Kimura, M. Yasuda, K. Maeda, S. Ueno, T. Tomizawa, Y. Kunimune, H. Nakamura, M. Moritoki, H. Iwai. Microelectron. Rel. 53 659 (2013)
  15. N. Kawasaki, N. Sugiyama, Y.J. Otsuka, H. Hashimoto, M. Tsujimoto, H. Kurata, S.J. Isoda. Ultramicroscopy 108, 399 (2008)
  16. D. Connetable, O. Thomas. J. Alloys Compd. 509, 2639 (2011)
  17. Y. Zhao, H. Hou, Y. Zhao, P. Han. J. Alloys Comp. 640, 233 (2015)
  18. D. Vanderbilt. Phys. Rev. B 41, 7892 (1990)
  19. K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbil. Phys. Rev. B 47, 10142 (1993)
  20. J.P. Perdew. Phys. Rev. B 33, 8822 (1986)
  21. M. Segall, P.J. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne. J. Phys.: Condens. Matter 14, 2717 (2002)
  22. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)
  23. T.H. Fischer, J. Almlof. J. Phys. Chem. 96, 9768 (1992)
  24. S. Lebaili, S. Hamar-Thibault. Zeitschrift fuer Metallkunde 75, 764 (1984)
  25. Y. Cao, J. Zhu, Y. Liu, Z. Nong, Z. Lai. Comp. Mater. Sci. 69, 40 (2013)
  26. Z. Wen, H. Hou, Y. Zhao, X. Yang, L. Fu, N. Wang, P. Han. Comp. Mater. Sci. 79, 424 (2013)
  27. F. Bosselet, J.C. Viala, C. Colin, B.F. Mentzen. J. Bouix. Mater. Sci. Eng. A 167, 147 (1993)
  28. K. Toman. Acta Crystallogr. 5, 329 (1952)
  29. D.F. Wilson, O.B. Cavin. Scr. Met. Mater. 26, 85 (1992)
  30. S.V. Prikhodko, Y. Ma, A.J. Ardell, D.G. Isaak, J.D. Carnes, S. Moser. Met. Mater. Trans. A 34, 1863 (2003)
  31. D. Connetable, O. Thomas. Phys. Rev. B 79, 094101 (2009)
  32. G. Malegori, L. Miglio. Phys. Rev. B 48, 9223 (1993)
  33. G. Grimvall. Thermophysical Properties of Materials. Elsevier, North Holland (1999)
  34. J.P. Watt. J. Appl. Phys. 50, 6290 (1979)
  35. J.P. Watt, L. Peselnick. J. Appl. Phys. 51, 1525 (1980)
  36. J.F. Nye. Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Oxford (1985)
  37. A. Otero-de-la-Roza, D. Abbasi-Perez, V. Luana. Comp. Phys. Commun. 182, 2232 (2011)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.