Издателям
Вышедшие номера
Allotropic conversion of carbon-related films by using energy beams
Naramoto H.1, Zhu Xiaodong1, Xu Yonghua1, Narumi K.1, Vacik J.1, Yamamoto S.2, Miyashita K.3,4
1Advanced Science Research Center, Japan Atomic Energy Research Institute, Watanuki, Takasaki, Gunma 37, Japan
2Department of Materials Development, Japan Atomic Energy Research Institute, Watanuki, Takasaki, Gunma 37 Japan
3Gunma Pref. Industrial Technology Res. Lab.
4190 Toriba Maebashi, Gunma 37, Japan
Выставление онлайн: 19 марта 2002 г.

Energy beams such as ion and laser beams were employed to convert carbon allotropes into another ones at the specified position because these energy sources can be controlled precisely in time and space. The ion beam deposition technique employing mass-separated ions was effective to study the nucleation process by changing several growth parameters (ion species, incident energies and substrate temperatures). Immersed nano-sized diamonds were found in s-1ptp3 rich amorphous film prepared with 100 eV 12C+ ions at room temperature. Surrounding these nano-diamonds, the regularly arrayed small bumps, "petals", were formed around the periphery of bald circles when cooling down. The Ar ion laser illumination is effective to design the array of high luminescent points on a C60 film by careful control of laser power, and a combination of micro-Raman spectrometer with a piezo-scanning system provides us a tool for 2-dimensional processing of photo-sensitive materials. The simultaneous bombardment during the C60 evaporation results in the interesting pattern formation specific for the simultaneous treatment. The dependence of surface nano-scale pattern on the ion energy and the substrate temperatures provides us a new tool to design the nano-scale functional materials. As an extreme, the appearance of hexagonal diamonds was detected with the disordered carbon and graphite under the condition of high ratio between the Ne ion beam and the C60 thermal beam.
  1. J. Vacik, H. Naramoto, K. Narumi, S. Yamamoto, K. Miyashita. J. Chem. Phys. 114, 9115 (2001)
  2. C. Cepek, A. Goldoni, S. Modesti. Phys. Rev. B53, 7 466 (1996)
  3. A. Andriotis. Phys. Rev. B60, 4521 (1999)
  4. F. Banhart, J.-C. Charlier, P.M. Ajayan. Phys. Rev. Lett. 84, 686 (2000)
  5. H. Naramoto, J. Vacik, S. Yamamoto, K. Narumi, Y. Xu. JAERI-Review 2000-024, 157 (2000)
  6. H. Hirai, M. Terauchi, M. Tanaka, K. Kondo. Phys. Rev. B60, 6357 (1999)
  7. E. Grossman, G.D. Lempert, J. Kulik, D. Marton, J.W. Rabalais, Y. Lifshitz. Appl. Phys. Lett. 68, 1214 (1996)
  8. V.I. Merkulov, D.H. Lowndes, G.E. Jellison Jr., A.A. Puretzky, D.B. Geohegen. Appl. Phys. Lett. 73, 2591 (1998)
  9. H. Ohno, J.A. van den Berg, S. Nagai, D.G. Armour. Nucl. Instr. Meth. B148, 673 (1999)
  10. Z. Tang, Z.J. Zhang, K. Narumi, Y. Xu, H. Naramoto, S. Nagai. J. Appl. Phys. 89, 1959 (2001)
  11. H. Naramoto, Y.H.Xu, X.D. Zhu, K. Narumi, J. Vacik, S. Yamamoto, K. Miyashita. Proc. Mat. Res. Soc. 647, O-5 18-1 (2001)
  12. H. Naramoto, S. Yamamoto, K. Narumi. Nucl. Instr. Meth. B161--163, 534 (2000)
  13. X.D. Zhu, Y.H. Xu, H. Naramoto, K. Narumi. Privat communikation
  14. F.P. Bundy, J.S. Kasper. J. Chem. Phys. 46, 3437 (1967)
  15. T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, O. Shimomura. Phys. Rev. B46, 6031 (1992)
  16. M. Nshishitani-Gamo, T. Tachibana, K. Kobayashi, I. Sakaguchi, K.P. Loh, K. Yamamoto, T. Ando. Dia. and Related Mater. 7, 783 (1998)
  17. B.R. Wu, J. Xu. Phys. Rev. B57, 13355 (1998)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.