Вышедшие номера
Anisotropy of electric resistivity of Sapele-based biomorphic SiC/Si composites
Orlova T.S.1, Smirnov B.I.1, de Arellano-Lopez A.R.2, Marti nez Fernandez J.2, Sepulveda R.2
1A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
2Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Sevilla, Spain
Email: orlova.t@mail.ioffe.ru
Поступила в редакцию: 23 июня 2004 г.
Выставление онлайн: 20 января 2005 г.

Electrical resistivity of Sapele-based biomorphic SiC/Si materials was measured in a wide temperature range from 10 K to room temperature. The samples were fabricated by the reactive infiltration of molten silicon into a carbonized Sapele (African Entandrophragma Cylindricum) wood preform. All the studied samples contained residual Si (10-35 wt.%). It was found that the resistivity-temperature (rho(T)) dependences have semi-metallic behavior which becomes very close to linear metallic one at 100<T<300 K. The obtained values of resistivity were quite low (rho~0.002-0.02 Omega·cm) and showed strong anisotropy: the resistivity along the wood growth axis was several times lower compared with one in the perpendicular direction. The extent of this anisotropy was in a correlation with the amount of residual Si (hence, with the amount of the residual porosity) in a sample. The resistivity perpendicular to the wood growth axis drastically increased with the Si content, whereas the resistivity parallel to it did not depend practically on the Si content. It is suggested that presence of residual carbon in the samples and carrier scattering at SiC/Si interphases could determine the observed character of rho(T) dependences. The work has been supported at the Universidad de Sevilla by MCYT Grant MAT2003-05202-C02-01 and in the Ioffe Institute by the Russian Fund for Basic Research (N 04 03 33183).
  1. T. Ota, M. Iakahashi, T. Hibi, M. Ozawa, H. Suzuki, J. Am. Ceram. Soc. 78, 3409 (1995)
  2. C.E. Byrne, D.E. Nagle. Mat. Res. Innovat. 1, 137 (1997)
  3. P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998)
  4. J. Martinez-Fernandez, F.M. Varela-Feria, M. Singh. Scripta Mater. 43, 813 (2000)
  5. M. Singh. Ceram. Sci. Eng. Proc. 21, 39 (2000)
  6. F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez, M. Singh. J. Eur. Ceram. Soc. 22, 2719 (2002)
  7. F.M. Varela-Feria, S. Lopez Pombero, J. Martinez-Fernandez, A.R. de Arellano-Lopez, M. Singh. Ceram. Eng. Sci. Proc. 23, 681 (2002)
  8. J. Martinez-Fernandez, A. Munoz, A.R. de Arellano-Lopez, F.M. Varela-Feria, A. Dominguez-Rodriguez, M. Singh. Acta Mater. 51, 3259 (2003)
  9. A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, M. Singh. Intern. J. Appl. Ceram. Techn. 1, 95 (2004)
  10. P. Greil. Mater. Chem. Phys. 61, 64 (1999)
  11. P. Greil. J. Eur. Ceram. Soc. 21, 105 (2001)
  12. Black ceramics. In: Technical Report 2000. News of Technology and Materials (2000). P. 49
  13. M. Singh. D.R. Rehrendt. J. Mater. Res. 9, 1701 (1994)
  14. M. Singh, D.R. Rehrendt. Mater. Sci. Eng. A 194, 193 (1995)
  15. Physico-chemical properties of semiconducting materials / Ed. A.V. Novoselov, V.B. Lazarev. Nauka, M. (1978). 339 p
  16. S.K. Brantov, A.V. Efremov. Materialovedenie 2, 48 (1999)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.