Вышедшие номера
The effect of the external lateral electric field on the luminescence intensity of InAs/GaAs quantum dots
Moskalenko E.S.1,2, Larsson M.1, Karlsson K.F.1, Holtz P.O.1, Monemar B.1, Schoenfeld W.V.3, Petroff P.M.3
1Department of Physics and Measurement Technology, Linkoping University, Linkoping, Sweden
2A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
3Materials Department, University of California, Santa Barbara, California, USA
Email: evgenii.moskalenko@mail.ioffe.ru
Поступила в редакцию: 15 февраля 2007 г.
Выставление онлайн: 19 сентября 2007 г.

We report on low-temperature micro-photoluminescence (mu-PL) measurements of InAs/GaAs quantum dots (QDs) exposed to a lateral external electric field. It is demonstrated that the QDs PL signal could be increased several times by altering the external and/or the internal electric field, which could be changed by an additional infra-red laser. A model which accounts for an essentially faster lateral transport of the photo-excited carriers achived in an external electric field is employed to explain the observed effects. The results obtained suggest that the lateral electric fields play a major role for the dot luminescence intensity measured in our experiment --- a finding which could be used to tailor the properties of QD-based optoelectronic applications. This work was supported by grants from the Swedish Foundation for Strategic Reseach (SSF) and Swedish Research Council (VR). E.S.M gratefully achnowledges financial support from the Royal Swedish Academy of Sciences and partial support from the program "Low-Dimensional Quantum Structures" of the Russian Academy of Sciences. PACS: 78.67.Hc, 73.50.Gr, 78.55.Cr
  1. L. Harris, D.J. Mawbray, M.S. Skolnick, M. Hopkinson, G. Hill. Appl. Phys. Lett. 73, 969 (1998); T. Lundstrom, W. Schoenfeld, H. Lee, P.M. Petroff. Science 286, 2312 (1999)
  2. J.M. Garcia, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff. Appl. Phys. Lett. 72, 3172 (1998)
  3. R. Heitz, M. Veit, N.N. Ledentsov, A. Hoffmann, D. Bimberg, V.M. Ustinov, P.S. Kop'ev, Zh.I. Alferov. Phys. Rev. B 56, 10 435 (1997); R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg. Phys. Rev. Lett. 83, 4654 (1999)
  4. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, Y. Arakawa. Phys. Rev. B 54, 11 532 (1996); U. Bockelman, T. Egele. Phys. Rev. B 46, 15 574 (1992)
  5. P.P. Paskov, P.O. Holtz, B. Monemar, J.M. Garcia, W.V. Schoenfeld, P.M. Petroff. Appl. Phys. Lett. 77, 812 (2000)
  6. A.F.G. Monte, J.J. Finley, A.D. Ashmore, A.M. Fox, D.J. Mowbray, M.S. Skolnik, M. Hopkinson. J. Appl. Phys. 93, 3524 (2003)
  7. C. Lobo, R. Leon, S. Marcinkeviv cius, W. Yang, P. Sercel, X.Z. Liao, J. Zou, D.J.H. Cockayne. Phys. Rev. B 60, 16 647 (1999)
  8. M.M. Sobolev, A.R. Kovsh, V.M. Ustinov, A.Yu Egorov, A.E. Zhukov, M.V. Maksimov, N.N. Ledentsov. Semiconductors 31, 1074 (1997)
  9. P.W. Fry, J.J. Finley, L.R. Wilson, A. Lema\^i tre, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, G. Hill, J.C. Clark. Appl. Phys. Lett. 77, 4344 (2000)
  10. E.S. Moskalenko, V. Donchev, K.F. Karlsson, P.O. Holtz, B. Monemar, W.V. Schoenfeld, J.M. Garcia, P.M. Petroff. Phys. Rev. B 68, 155 317 (2003)
  11. W. Heller, U. Bockelmann, G. Abstreiter. Phys. Rev. B 57, 6270 (1998)
  12. J. Seufert, M. Obert, M. Scheibner, N.A. Gippius, G. Bacher, A. Forchel, T. Passow, K. Leonardi, D. Hommel. Appl. Phys. Lett. 79, 1033 (2001)
  13. R.G. Neuhauser, K.T. Shimizu, W.K. Woo, S.A. Empedocles, M.G. Bawendi. Phys. Rev. Lett. 85, 3301 (2000)
  14. V. Davydov, I. Ignatiev, H.W. Ren, S. Sugou, Y. Masumoto. Appl. Phys. Lett. 74, 3002 (1999)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.