Вышедшие номера
Влияние дисперсии на распределение числа фотонов в параметрических модах синхронно накачиваемого оптического параметрического генератора
Российский научный фонд, Проведение фундаментальных научных исследований и поисковых научных исследований малыми отдельными научными группами, 24-22-00318
Малышев Д.М. 1, Аверченко В.А. 1, Тихонов К.С.1
1Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
Email: malyshev.wrk@yandex.ru
Поступила в редакцию: 20 июля 2025 г.
В окончательной редакции: 30 июля 2025 г.
Принята к печати: 12 августа 2025 г.
Выставление онлайн: 29 сентября 2025 г.

Исследовано влияние дисперсии групповых скоростей на содержание фотонов в собственных модах оптического параметрического генератора с синхронной накачкой. Основываясь на существующей модели, учитывающей влияние квадратичной дисперсии на эволюцию параметрических мод, использовано ранее полученное решение для анализа процессов влияющих на распределение среднего числа фотонов по модам излучения. Опираясь на приближенное выражение для амплитуды поля на выходе резонатора, включающее слагаемые вплоть до четвертого порядка теории возмущений, численно проанализированы процессы, происходящие в оптическом генераторе. Ключевые слова: сжатый свет, спонтанное параметрическое рассеяние, дисперсия групповых скоростей, оптический параметрический генератор, неклассические состояния света.
  1. A.I. Lvovsky. Squeezed light (2014). DOI: 10.48550/ARXIV.1401.4118
  2. O. Crisafulli, N. Tezak, D.B.S. Soh, M.A. Armen, H. Mabuchi. Optics Express, 21, 18371 (2013). DOI: 10.1364/OE.21.018371
  3. F. Kaiser, B. Fedrici, A. Zavatta, V.D. Auria, S. Tanzilli. Optica, 3, 362 (2016). DOI: 10.1364/OPTICA.3.000362
  4. W. Asavanant et al. Science, 366, 373 (2019). DOI: 10.1126/science.aay2645
  5. I. Walmsley. Optica Quantum, 1, 35 (2023). DOI: 10.1364/OPTICAQ.507527
  6. A.E. Ulanov et al. Nature Communications, 7, 11925 (2016). DOI: 10.1038/ncomms11925
  7. A. Avella et al. Optics Express, 19, 23249 (2011). DOI: 10.1364/OE.19.023249
  8. M. Manceau et al. Physical Review Letters, 119, 223604 (2017). DOI: 10.1103/PhysRevLett.119.223604
  9. W. Yang et al. Chemosensors, 11, 18 (2022). DOI: 10.3390/chemosensors11010018
  10. R. Gosalia, R. Malaney, R. Aguinaldo, J. Green, P. Brereton. In GLOBECOM 2023 --- 2023 IEEE Global Communications Conference (IEEE, Kuala Lumpur, Malaysia, 2023) p. 2317--2322. DOI: 10.1109/GLOBECOM54140.2023.10437698
  11. J. Aasi et al. Nature Photonics, 7, 613 (2013). DOI: 10.1038/nphoton.2013.177
  12. L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu. Physical Review Letters, 57, 2520 (1986). DOI: 10.1103/PhysRevLett.57.2520
  13. C. Fabre N. Treps. Reviews of Modern Physics, 92, 035005 (2020). DOI: 10.1103/RevModPhys.92.035005
  14. M. Piccardo et al. Journal of Optics, 24, 013001 (2022). DOI: 10.1088/2040-8986/ac3a9d
  15. V. Sukharnikov, P. Sharapova, O. Tikhonova. Optics \& Laser Technology, 136, 106769 (2021). DOI: 10.1016/j.optlastec.2020.106769
  16. T. Kouadou, F. Sansavini, M. Ansquer, J. Henaff, N. Treps, V. Parigi. APL Photonics, 8, 086113 (2023). DOI: 10.1063/5.0156331
  17. A.D. Manukhova, K.S. Tikhonov, T.Y. Golubeva, Y.M. Golubev. Physical Review A, 96, 023851 (2017). DOI: 10.1103/PhysRevA.96.023851
  18. G. Patera, N. Treps, C. Fabre, G.J. De Valcarcel. The European Physical Journal D, 56, 123 (2010). DOI: 10.1140/epjd/e2009-00299-9
  19. J. Roslund et al. Nature Photonics, 8, 109 (2014). DOI: 10.1038/nphoton.2013.340
  20. B. Lamine, C. Fabre, N. Treps. Physical Review Letters, 101, 123601 (2008). DOI: 10.1103/PhysRevLett.101.123601
  21. S. Wang, X. Xiang, N. Treps, C. Fabre, T. Liu, S. Zhang, R. Dong. Physical Review A, 98, 053821 (2018). DOI: 10.1103/PhysRevA.98.053821
  22. Y. Cai, J. Roslund, V. Thiel, C. Fabre, N. Treps. npj Quantum Information, 7, 82 (2021). DOI: 10.1038/s41534-021-00419-w
  23. N.C. Menicucci. Physical Review Letters, 112, 120504 (2014). DOI: 10.1103/PhysRevLett.112.120504
  24. V.A. Averchenko, T.Y. Golubeva, Y.M. Golubev, C. Fabre. Optics and Spectroscopy, 105, 758 (2008). DOI: 10.1134/S0030400X08110192
  25. M. Walschaers, B. Sundar, N. Treps, L.D. Carr, V. Parigi. Quantum Science and Technology, 8, 035009 (2023). DOI: 10.1088/2058-9565/accdfd
  26. P. Renault, J. Nokkala, G. Roeland, N. Joly, R. Zambrini, S. Maniscalco, J. Piilo, N. Treps, V. Parigi. PRX Quantum, 4, 040310 (2023). DOI: 10.1103/PRXQuantum.4.040310
  27. V. Roman-Rodriguez, D. Fainsin, G.L. Zanin, N. Treps, E. Diamanti, V. Parigi. Multimode Squeezed State for Reconfigurable Quantum Networks at Telecommunication Wavelengths (2023). DOI: 10.48550/ARXIV.2306.07267
  28. V.A. Averchenko, D.M. Malyshev, K.S. Tikhonov. New Journal of Physics, 26, 123017 (2024). DOI: 10.1088/1367-2630/ad9be1
  29. F. Arzani, C. Fabre, N. Treps. Physical Review A, 97, 033808 (2018). DOI: 10.1103/PhysRevA.97.033808
  30. K.J. Blow, R. Loudon, S.J.D. Phoenix, T.J. Shepherd. Physical Review A, 42, 4102 (1990). DOI: 10.1103/PhysRevA.42.4102
  31. B. Brecht, D.V. Reddy, C. Silberhorn, M. Raymer. Physical Review X, 5, 041017 (2015). DOI: 10.1103/PhysRevX.5.041017
  32. D.B. Horoshko, L. La Volpe, F. Arzani, N. Treps, C. Fabre, M.I. Kolobov. Physical Review A, 100, 013837 (2019). DOI: 10.1103/PhysRevA.100.013837

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.