Factors determining parasitic thermionic current in cathode-grid units with pyrographite grids
Bogachev R. Yu. 1,2, Krachkovskaya T. M. 1, Shesterkin V. I. 1, Zhuravlev S. D. 1, Glukhova O. E. 1,3,4, Kolosov D. A. 1,3
1Joint Stock Company Research and Production Enterprise Almaz, Saratov, Russia
2Yuri Gagarin State Technical University of Saratov, Saratov, Russia
3Saratov State University, Saratov, Russia
4I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: BogachevRU@almaz-rpe.ru, elektron.t@bk.ru, glukhovaoe@info.sgu.ru, kolosovda@bk.ru

PDF
The article presents the results of studying the grid electrodes made of anisotropic pyrolytic graphite (APG) as part of the cathode-grid unit (CGU) of a powerful pulsed traveling-wave tube (TWT). It was found that the grid electrodes made of APG demonstrated high anti-emission properties in the temperature range of 800 oC-900 oC at cathode temperatures of 1080 oC-1150 oC. It was found that during testing the CGU as part of a TWT device for 900 hours in the forced mode (the cathode temperature exceeded the operating temperature by 70 oC), there was no parasitic thermionic current in the cathode-control grid circuit. This result can be explained by an increase in the electron work function of the APG with a barium oxide film adsorbed on its surface. The results of calculations using the density functional method and quantum molecular dynamics modeling for the structure of APG with a BaO film having a hexagonal lattice showed that the value of its electron work function was ~ 5.14 eV, which is significantly higher than the work function of APG (~ 4.7 eV) and barium oxide (~ 1-1.6 eV). Keywords: parasitic thermal emission, cathode-grid unit, anisotropic pyrolytic graphite, density functional theory, adsorption, molecular dynamics modeling.
  1. R.Y. Bogachev, D.A. Bessonov, S.D. Zhuravlev, T.M. Krachkovskaya, V.I. Shesterkin. Elektronnaya tekhnika, Ser. 1. SVCh-tekhnika, 3 (563), 64 (2024 (in Russian)
  2. Yu.A. Grigoriev, B.S. Pravdin, V.I. Shesterkin. Obzory po elektronnoy tekhnike. Ser. 1. Elektronika SVCh., 7 (1246), 71 (1987) (in Russian)
  3. T.M. Gardiner. Intern. Conf. Microwave Tubes in Syst.: Problems Prospects, 1984
  4. J. Jiang, B. Jiang, C. Ren, T. Feng, X. Wang, X. Liu, S. Zou. J. Vacuum Sci. Technol. A: Vacuum, Surfaces and Films, 23 (3), 506 (2005). DOI: 10.1116/1.1894726
  5. V.A. Smirnov, A.V. Konnov. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika, 2 (562), 23 (2024) (in Russian)
  6. I.P. Melnikova, A.V. Lyasnikova, S.V. Maltseva. Lett. Mater., 7 (3), 218 (2017). DOI: 10.22226/2410-3535-2017-3-218-221
  7. A. Shih, C.R.K. Marrian, G.A. Haas. In: Appl. Surf. Sci., 24, 415 (1985)
  8. V.G. Kuznetsov, D.K. Kostrin. J. Phys.: Conf. Ser., 1954, 1 (2021). DOI: 10.1088/1742-6596/1954/1/012026
  9. A. Latini, M. Tomellini, L. Lazzarini, G. Bertoni, D. Gazzoli, L. Bossa, D. Gozzi. PLOS ONE, 9 (8), 1 (2014). DOI: 10.1371/journal.pone.0105788
  10. M.K. De Pano, S.L. Hart, A.A. Hanna, A.C. Schneider. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale (American Institute of Aeronautics and Astronautics Florida, USA, 2004), p. 1
  11. J. Heikkinen, E. Petrola, N. Wester, J. Koskinen, T. Laurila, S. Franssila, V. Jokinen. Micromachines, 10 (510), 1 (2019). DOI: 10.3390/mi10080510
  12. V.I. Shesterkin, T.M. Krachkovskaya, P.D. Shalaev, L.T. Baymagambetova, S.D. Zhuravlev, D.I. Kirichenko, R.Yu. Bogachev. Radiotekhnika i elektronika, 67 (10), 1 (2022) (in Russian). DOI: 10.31857/S0033849422100102
  13. S.D. Zhuravlev, R.Yu. Bogachev, V.I. Rogovin, A.I. Petrosyan, V.I. Shesterkin, B.A. Grizbil, V.P. Ryabukho, A.A. Zakharov. Elektron. Tekh. Ser. 1, SVCh-Tekh., 4 (539), 45 (2018) (in Russian)
  14. D.A. Bessonov, R.Yu. Bogachev, S.D. Zhuravlev, T.M. Krachkovskaya, V.I. Shesterkin. Sposob sovmestnoy proshivki dvoinykh setchatykh strukur metodom lazernoy ablyatsii (Pat. N 2831606. Appl. (09.04.2024) (in Russian). Publ. 11.12.24)
  15. R.Y. Bogachev, D.A. Bessonov, S.D. Zhuravlev, T.M. Krachkovskaya, T.N. Sokolova, V.I. Shesterkin. Sposob nerazyomnogo soedineniya detaley iz uglerodosoderzhaschykh materialov s detalyami iz metallov metodom lazernogo zaklepyvaniya (Patent application N 2024105105 of 27.02.2024)
  16. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejion, D. Sanchez-Portal. J. Phys. Condensed Matter, 14 (11), 2745 (2002). DOI: 10.1088/0953-8984/14/11/302/
  17. J. Oroya, A. Martin, M. Callejo, M. Garcia-Mota, F. Marchesin. Pseudopotential and numerical atomic orbitals basis dataset. In SIMUNE Atomistics (www.simuneatomistics.com)
  18. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru