Propagation of finite amplitude waves along a cylindrical jet of magnetic fluid in an axial magnetic field
Zubarev N. M. 1,2, Zubareva O. V. 1
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: nick@iep.uran.ru, olga@iep.uran.ru

PDF
The propagation of nonlinear waves along the surface of a cylindrical jet of magnetic fluid in the presence of a strong axial magnetic field is studied. It is demonstrated that, in the case of a liquid with high magnetic permeability, axisymmetric perturbations of the jet boundary of arbitrary amplitude can propagate along it without distortion. The analogy with known solutions describing the propagation of Alfven waves in an unbounded perfectly conducting fluid is discussed. Keywords: ferromagnetic fluid, axial magnetic field, jet, nonlinear waves, exact solutions.
  1. J.R. Melcher. Field-Coupled Surface Waves (MIT Press, Cambridge, MA, 1963)
  2. R.E. Zelazo, J.R. Melcher. J. Fluid Mech., 39 (1), 1 (1969). DOI: 10.1017/S0022112069002011
  3. R.E. Rosensweig. Ann. Rev. Fluid Mech., 19, 437 (1987). DOI: 10.1146/annurev.fl.19.010187.002253
  4. V.M. Korovin. ZhTF, 94 (5), 722 (2024) (in Russian). DOI: 10.61011/JTF.2024.05.57810.263-23 [V.M. Korovin. Tech. Phys., 69 (5), 675 (2024). DOI: 10.61011/TP.2024.05.58516.263-23]
  5. M.D. Cowley, R.E. Rosensweig. J. Fluid Mech., 30 (4), 671 (1967). DOI: 10.1017/S0022112067001697
  6. N.G. Taktarov. Magnetohydrodynamics, 11 (2), 156 (1975)
  7. P.A. Yakubenko, G.A. Shugai. Fluid Dynamics Research, 18, 325 (1996). DOI: 10.1016/0169-5983(96)00020-2
  8. N.G. Taktarov, A.A. Kormilitsin. Izvestiya vuzov. Povolzhskiy region, 1 (37), 13 (2016) (in Russian)
  9. S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961)
  10. R.W. Lardner, S.K. Trehan. Astrophys. Space. Sci., 96, 261 (1983). DOI: 10.1007/BF00651671
  11. V.G. Bashtovoi, M.S. Krakov. J. Appl. Mech. Tech. Phys., 19 (4), 541 (1978). DOI: 10.1007/BF00859405
  12. R. Canu, M.-C. Renoult. J. Fluid Mech., 915, A137 (2021). DOI: 10.1017/jfm.2021.171
  13. M. Fabian, P. Burda, M. vSvikova, R. Huvnady. J. Magn. Magn. Mater., 431, 196 (2017). DOI: 10.1016/j.jmmm.2016.09.052
  14. V.I. Arkhipenko, Yu.D. Barkov, V.G. Bashtovoi, M.S. Krakov. Fluid Dynamics, 5, 477 (1980). DOI: 10.1007/BF01089602
  15. V.I. Arkhipenko, Yu.D. Barkov. J. Appl. Mech. Tech. Phys., 21, 371 (1980). DOI: 10.1007/BF00920775
  16. E. Bourdin, J.-C. Bacri, E. Falcon. Phys. Rev. Lett., 104, 094502 (2010). DOI: 10.1103/PhysRevLett.104.094502
  17. V.G. Bashtovoi, R.A. Foigel'. Fluid Dynamics, 9, 759 (1984). DOI: 10.1007/BF01093544
  18. M.D. Groves, D.V. Nilsson. J. Math. Fluid Mech., 20, 1427 (2018). DOI: 10.1007/s00021-018-0370-9
  19. M.G. Blyth, E.I. Pvarvau. J. Fluid Mech., 750, 401 (2014). DOI: 10.1017/jfm.2014.275
  20. A. Doak, J.M. Vanden-Broeck. J. Fluid Mech., 865, 414 (2019). DOI: 10.1017/jfm.2019.60
  21. S.K. Malik, M. Singh. Int. J. Engng Sci., 26 (2), 175 (1988). DOI: 10.1016/0020-7225(88)90103-6
  22. A.G. Kulikovsky, G.A. Lyubimov. Magnitnaya gydrodinamika (Logos, M., 2005)
  23. E.N. Parker. Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford University Press, Oxford, 1979)
  24. N.M. Zubarev. Phys. Lett. A, 333, 284 (2004). DOI: 10.1016/j.physleta.2004.10.058
  25. N.M. Zubarev, O.V. Zubareva. Tech. Phys. Lett., 32 (10), 886 (2006). DOI: 10.1134/S106378500610021X
  26. N.M. Zubarev. JETP Lett., 89 (6), 271 (2009). DOI: 10.1134/S0021364009060022
  27. N.M. Zubarev, O.V. Zubareva. Phys. Rev. E, 82, 046301 (2010). DOI: 10.1103/PhysRevE.82.046301
  28. A.Yu. Solovyova, E.A. Elfimova. J. Magn. Magn. Mater., 495, 165846 (2020). DOI: 10.1016/j.jmmm.2019.165846
  29. C. Khokhryakova, K. Kostarev, I. Mizeva. Fluid Dynamics \& Materials Processing, 20 (10), 2205 (2024). DOI: 10.32604/fdmp.2024.051053
  30. L.D. Landau, Elektrodinamika sploshnykh sred (Fizmatlit, M., 2003) (in Russian)
  31. N.M. Zubarev, E.A. Kochurin. JETP Lett., 99 (11), 627 (2014). DOI: 10.1134/S0021364014110125
  32. E.A. Kochurin. J. Appl. Mech. Tech. Phys., 59, 79 (2018). DOI: 10.1134/S0021894418010108
  33. E. Kochurin, G. Ricard, N. Zubarev, E. Falcon. Phys. Rev. E, 105 (6), L063101 (2022). DOI: 10.1103/PhysRevE.105.L063101
  34. I.A. Dmitriev, E.A. Kochurin, N.M. Zubarev. IEEE Trans. Dielectr. Electr. Insul., 30 (4), 1408 (2023). DOI: 10.1109/TDEI.2023.3256350
  35. E.A. Kochurin. J. Magn. Magn. Mater., 503, 166607 (2020). DOI: 10.1016/j.jmmm.2020.166607

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru