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Introduction

Magnetic field tangential to the free surface of magnetic
fluid has a stabilizing effect on it [1-4] (instead, normal field,
leads to destabilization of the system [1,3,5]). This effect
can be used to stabilize fluid jets, i.e., to suppress Plateau-
Rayleigh capillary instability. The stability of a cylindrical
jet of a non-conducting magnetic fluid in the axial magnetic
field was first analyzed in [6]; the findings were developed
in [7,8] (studies of stability of the conducting fluid jets
within MHD model were conducted in [9,10]). The stability
of an axisymmetric jet of a magnetic fluid in the presence of
all components of an external magnetic field was analyzed
in [11] (see also recent paper [12]). Such studies are
important for understanding the scenarios of jet decay and
subsequent droplet formation [13]. Of considerable interest
is the study of the effect of an azimuthal magnetic field on
a cylindrical layer of magnetic fluid surrounding a current
conductor [14,15]. The possibility of propagation of solitary
axisymmetric waves has been experimentally demonstrated
for such a system [16]. Nonlinear theory has developed,
for example, in [17,18] (small amplitude waves) and [19,20]
(strongly nonlinear waves).

This paper studies the propagation of strongly linear
axisymmetric waves along the surface of a cylindrical jet
of a magnetic fluid in the presence of a strong external
axial magnetic field. The law of linear wave dispersion for
such a system was obtained in [6,8]. In [21], a weakly
nonlinear (i.e., for small-amplitude surface perturbations)
theory of wave propagation was proposed for this problem:
the nonlinear Schrodinger equation for the envelope of a
wave packet was derived, and its modulation instability
was described. We demonstrate that in the case of a

fluid with high magnetic permeability, one may go beyond
considering the waves of small amplitude. It is possible
to get exact wave solutions delineating the propagation of
perturbations of the cylindrical jet boundary of an arbitrary
amplitude (ie. comparable to both the wavelength and
the radius of the jet). Such solutions are similar in a
number of properties to the well-known solutions describing
the propagation of Alfven waves in an unlimited perfectly
conducting fluid [22,23]. Despite the qualitative differences
(fundamentally different geometries, media with different
physical properties; in fact, only the presence of an external
homogeneous magnetic field is common), the equations
of motion in both cases admit solutions where arbitrary
nonlinear waves can propagate at a constant speed along
the field direction.

It should be noted that from a mathematical point of
view, the problem of magnetic fluid behavior in external
magnetic field is similar to the problem of behavior of
a dielectric fluid in external electric field — the corre-
sponding equations coincide after replacing the magnetic
field with electric one and magnetic permeability with
dielectric permittivity [1]. In studies [24-27] , it was
found that nonlinear waves of arbitrary configuration can
propagate without distortion along the initially flat free
surface of an ideal dielectric fluid along the direction of
external tangential electric field. This situation is realized
for a fluid with a high value of dielectric constant in
case of a sufficiently strong field, when the impact of
electrostatic forces becomes dominant. The findings from
the present study may be considered as a generalization
of the results of [24-27] to another, cylindrical, — system
geometry.
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1. Dispersion relation

Let us consider the evolution of waves on the free surface
of an ideal incompressible non-conductive magnetic fluid
having constant magnetic permeability u. In the undisturbed
state, the jet is an infinitely long circular cylinder with a
radius of ro — the geometry of the problem is shown
in Fig. 1. The jet is placed in an external homogeneous
magnetic field with a strength of Hy, directed along its axis.
Similar to [8] we believe that the field is generated by a
solenoid with a radius of Ry with its axis coinciding with
the jet axis.

Let’s introduce the function 7 which determines defor-
mation of the jet surface. The shape of its surface is de-
scribed by equation r =rg 4 n(6, z, t), where {r, 0, z} are
cylindrical coordinates, t is time. In linear approxima-
tion, ie, for small amplitude deformations [d7/0z| < 1
and |0n/900| < ry, the system behavior is fully described
by the dispersion relation corresponding to expression
n o< expli (N0 + kz — wt)], where n=0,1,2... is the az-
imuthal wavenumber, K is axial wavenumber, w is frequency.
Dispersion law is expressed as follows [8]:
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where value A is specified as
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(KT 0)Kn(KRo) — I'n(KRo)Kn(Kro)

Here uo is magnetic constant, p is density of fluid, « is
surface tension coefficient, |, and K, are modified Bessel
functions of the first and kind of order n, and L; and
K/, are their derivatives with respect to argument (for the
environment surrounding the jet, we consider the density to
be zero, and the magnetic permeability be equal to unit).
The first term on the right-hand side of (1) is responsible
for the influence of magnetic field, and the second for the
influence of capillary effects.

The jet surface is unstable with respect to perturbations
with wave numbers k and n for which the right-hand side
is negative and, accordingly, the frequency w is imaginary.
In paper [8], a detailed stability analysis was carried out,

II
A= 1
n

Figure 1. Geometry of the problem (schematic representation).
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indicating the stabilizing effect of the magnetic field on
the jet. Note that findings of [8] are a generalization of
the results of the pioneering work [6], which examined the
stability of a magnetic fluid jet in a homogeneous magnetic
field in unlimited space. The dispersion law from [6] may
be found from (1) by examining the limit Ry > ro. Because
the asymptotics are true,

In(X) &~ Ka(x) ~ —— X
~ . ~ . — 0Q,
" 27X " \/ 2X/;7[

in this limit we have A — K/ (kro)/Kn(krg), i.e. in (1) the
dependence on the solenoid radius fades away.

Let 1 be a characteristic spatial scale of the jet surface
perturbations. From general considerations, it is clear that
for small-scale perturbations (1 < rg), the term responsible
for capillary effects will prevail in the dispersion law (1).
Indeed, in this limit, the geometry of the problem changes
from cylindrical to flat. Then the first term on the right
side (1) will have an order of 172, and the second term
of 273 [1-3]. As a result, at sufficiently small 1, capillary
forces prevail over magnetic ones.

We will consider large-scale surface perturbations com-
parable to the radius of the jet, A ~ rg, or, in the terms of
wave numbers k and n, \/(n/rq)2 + k2 = O(ry'). For such
perturbations in a sufficiently strong magnetic field, the term
responsible for its influence in the law of dispersion (1) will
dominate. The characteristic magnetic pressure is estimated
as Pm = pouH3/2; the capillary pressure as p, = a/ro. We
introduce the dimensionless parameter & = pm/ Py, Which
characterizes the relative contribution of magnetic and
capillary pressures. We will assume the magnetic field to
be strong if 6 > 1 and, as a result, capillary effects can be
ignored: wave propagation will be entirely determined by
the influence of the magnetic field.

In this paper, we will consider a medium with high
magnetic permeability, ¢ > 1, which is quite feasible for
ferromagnetic fluids [28]. As a result of expansion of the
right-hand side of (1) in small parameter 1/u, the dispersion
law takes a simple algebraic form

212
0> = FHRKT 4 o).
0

When introducing the Alfven velocity Va = Hov/uott/p

we obtain
w? ~ VK2 (2)

Thus, for the case u > 1, when condition § > 1 (strong
magnetic field) is fulfilled, the dispersion relation is radically
simplified. For large-scale perturbations of the jet surface
(A ~ryp), there’s no more any dependence on azimuthal
number n, on surface tension «, as well as on geometric
parameters ro and Ry.

For our subsequent analysis, it is essential to assume that
the magnetic permeability u is constant, i.e., independent
of the magnetic field.  For ferromagnetic fluids, this
approximation is valid if the field strength is less than a
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certain threshold, which we denote as H¢. Let’s consider
how such a requirement can be combined with the strong
field condition § > 1.

Let’s estimate the value of H. for the ferrofluids used in
the experiments. From [3] it is known that for a colloidal
ferrofluid, the magnetization M depends linearly on the
strength of the applied magnetic field at relatively low
Ho. The ratio M = x;jHy is valid, where the proportionality
coefficient x; is the so-called initial magnetic susceptibility.
At larger values of H( the magnetization approaches the
state of saturation: M ~ Ms = const. As the boundary
between these limits, it is natural to take the value of
the field strength H¢, for which M = Mg/2. Then, we’ll
obtain Hc = Ms/(2y;). For example, in the studies [29] a
ferrofluid was used for which y; = 7.0, Mg = 51.4kA/m,
a=23.5mN/m. For the fluid permeability we have
u=1+yx =8.0, ie. the condition u > 1 is properly
fulfilled. For the threshold field strength, the estimate
is Hc = 3.7kA/m. The value H( should not exceed this
value so that the magnetic permeability can be considered
constant. When Hy = H¢ for ro = 5Smm we find § = 14.4,
ie. condition § > 1 for magnetic forces prevalence over
the capillary ones is fulfilled. It follows from this that it
is possible to select such a magnetic fluid and such values
of external field strength that three conditions used in this
paper will be fulfilled simultaneously: ¢ > 1, § > 1 and
Ho < Hec.

Let’s return to the discussion of the dispersion relation. In
terms of perturbation n of the jet boundary, the dispersion
law (2) corresponds to the linear wave equation

%n 20
— = —. 3
a2 A §z2 (3)
Its solution is
n~nt(z—Vat,0)+n (z+Vat, 0), 4)

where n are arbitrary functions (with obvious limitations
for linear waves |dn*/dz| < 1 and |dnT /36| < ro) that
define the shape of waves propagating without distortion
in positive and negative directions of z axis with constant
speed Va.

Below, we will analyze the reasons resulting in such
system behavior and also demonstrate that some of our
conclusions about the dynamics of the jet boundary linear
perturbations may be extended to the general, nonlinear
case.

2. Motion equations

As was demonstrated in section 1, it is of interest to
consider the behavior of a jet of magnetic fluid under the
action of magnetic forces only, ie., without taking into
account the influence of capillary forces. Let’s consider this
fluid motion as vortex-free. Then we can introduce a scalar
velocity potential ¢ so that the velocity vector is defined as

r=ry+tn(z, 1

Figure 2. Spatially localized axisymmetric perturbation of the
cylindrical jet surface (schematically).

its gradient: v = V¢. For an incompressible fluid, we have
V -v = 0 and, therefore, the potential satisfies the Laplace
equation V2¢ = 0.

It was shown above that in the limiting case u > 1, the
dispersion law does not contain the azimuthal number n.
This gives a reason to neglect azimuthal perturbations of the
jet surface, ie., to consider only axisymmetric perturbations
n =n(z,t) (this corresponds to n = 0) (Fig. 2). In the ax-
isymmetric case ¢ = ¢(r, z,t), and the Laplace equation
for the velocity potential is written as

82¢ 10¢ 32¢
W‘F;a-f—ﬁ—o. (5)

It should be solved with the following boundary condi-
tions:

3  1(3p\> 1 [d3p\°
at §<8r) 5(32>
_Ep+f(t), r=ro+n(zt), (6)

an 3¢ dndp

e =ro+n(zt), (7)
A
I 0, r=0, (8)

where p= p(r,z,t) is fluid pressure, and f is arbitrary
function of time. Condition (6), which is often called
dynamic, has the meaning of the unsteady Bernoulli
equation taken at the free boundary of the jet. Kinematic
condition (7) relates the velocity on the fluid free surface
to the function n, which defines its shape. Condition (8)
corresponds to the fact that the velocity on the jet axis has
only one axial component.

Let’s consider only spatially localized perturbations of the
jet boundary, ie. n— 0 at |z] — oo (Fig. 2). Then, at
infinity the following is true

3¢ d¢p
— =

0, — —0,

ar 32 |z| — oo. 9)

The pressure in (6) p, according to [30], is set by the
expression (here we do not take into account capillary

Technical Physics, 2025, Vol. 70, No. 6



Propagation of finite amplitude waves along a cylindrical jet of magnetic fluid in an axial magnetic field 1045

effects)

p=pun+ 55 (H—H) -2 H =AY, (10
where pam is constant external (atmospheric) pressure,
H, and H, are tangential components, whereas H, and
H,, are components of the magnetic field strength inside the
fluid and, respectively, outside it, which are normal to the
free boundary. The standard boundary conditions shall be

satisfied for the magnetic field components
H, =H,, uH,=H, (11)

Using them, pressure (10) can be expressed through the
components H; and Hp, of the magnetic field strength inside
the fluid:

Ho(p — 1
P = Patm — %(ﬂHﬁ_Hz)- (12)
The magnetic field in a jet of a magnetic
fluid (H={H;,0,H;}) and in its surrounding space
(H = {H;, 0, H;}) is found from Maxwell’s equations for a
nonconducting medium in the magnetostatic approximation:

VxH=0, V-H=0, VxH=0, V-H=0. (13)

These equations should be solved together with condi-
tions on the free boundary (11), conditions on the system
axis and on the solenoid surface,

r=0, (14)

H =0, r =Ry, (15)

as well as with conditions on infinity

H, —Hy, H —0, |z| — oo, (16)

H, — Hy, H; — 0, |z| — oc. (17)

Since the velocity potential may be selected somewhat
arbitrary, instead of a couple of conditions (9) it is possible
to use the only condition

¢ —0, |z| — occ. (18)

In this case, the function f included in the Bernoulli

equation will be uniquely defined as

¢ _ Pam  po(u — 1M
P 2p
Taken together, the equations given in sec. 2 fully describe
the nonlinear evolution of perturbations of the boundary

of a magnetic fluid jet under the action of external axial
magnetic field.
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3. The limit of high magnetic
permeability

Let us consider the case of high magnetic permeability
u > 1, which can be realized for ferromagnetic fluids.
In sec. 1 based on the analysis of the dispersion law (1),
we’ve demonstrated that in this limit linear waves propagate
along the jet axis in positive and negative directions
without distortion: see solution (4). The condition for
the applicability of linear approximation is the smallness of
the jet deformations, |dn/dz| < 1. Here we will consider
the propagation of strongly nonlinear waves, ie., the case
of perturbations of the jet boundary with large inclination
angles, dn/90z = O(1).

Analyzing the conditions (11) and (14)—(17), we may
conclude that the values HT/HO, H:/Ho and Hn/Ho in
expansion in small parameter 1/u relate to O(1) order, and
the value Hp/Hg to the higher order of smallness O(1/u).
The normal component of the magnetic field strength in a
fluid turns out to be much smaller in absolute value than the
tangential component, and it can be assumed that the field
lines are directed tangentially to the curved boundary. This
leads to situation that the problem of finding the distribution
of the magnetic field inside the jet is separated from the
general problem of finding the distribution of the field in the
entire space. For the limiting case u > 1, we can identically
put

Hh=0, (19)

and search for the field distribution where the boundary line
of force will lie on the fluid free surface.

It should be stresses that the problem of finding the
field distribution outside the fluid does is not separated
from the original problem for the limit ¢ > 1. To solve
it, it is first necessary to find the field distribution inside
the jet, and thereby determine H,, and only then solve
an additional problem outside the jet with the boundary
condition H,; = H,. As a result, the distribution H,, will be
found, in particular. This, taking into account the coupling
Hn = Hp/u, will make it possible, with a large but finite
U, to calculate the normal component of the magnetic field
inside the fluid, ie., to actually make the next iteration (in
the first iteration H, = 0). However, as it turns out, for the
purposes of this work, it is not necessary to implement such
an iterative procedure. To describe the fluid motion, we
need to find pressure (12) at the boundary of the fluid due
to the influence of the magnetic field, and it can be found
using only the field distribution inside the jet. Indeed, for
the terms included in the right-hand side of (12), we have

HZ/HG = 0O(1), wHi/H3 =0O(1/u).

Thus, the term in (12) containing the normal component
of the magnetic field is small, and it is enough to consider
only first approximation where H, = 0. Then, in the basic
order of expansion in a small parameter 1/u, we have

~ HouH?

~

pouH3
, ~ - 20
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Taking into account the magnetostatic equations (13), it
is possible to reduce the number of unknown functions
by introducing an auxiliary scalar potential ¥(r, z,t) so
that H = Vi. This potential satisfies the Laplace equation
V2 =0, written in the case of axial symmetry of the
problem as

2
%, 1oy

a2 T roar 9z

We’ll get the boundary conditions for (21) by passing

n (14),(16),(19) from the components of magnetic field

to the potential 3 via the relations H, = dy/dr and
H; = dy/0z. We find

2
0V o, (21)

oY
5 =0 r=0 (22)
Y — Hoz, |z] — oo, (23)
0 on oY _
Ty 5y =0 T =Totn(z.b). (24)

Here, we used the expression

on 2 an
Huy 1+ (5;) =Hr = 5, He
binding the normal component of the magnetic field
strength H,, with axial and radial components H, and H;,.
Finally, when using the potential i and taking into
account the relations (19) and (20), the unsteady Bernoulli
equation (6) is rewritten as

0p 1 (3p\* |1 (0¢\®  pou ()
Wz(ﬁ) *5(5) _$<W)

Mol (%)2 ~ HouH;G

2, oz 20

2% , r=ro+n(z,t). (25

The remaining equations defining the dynamics of the
fluid remain unchanged. Let’s again focus on an important
feature of the motion equations for the case u > 1: the
behavior of a fluid is completely determined by a pair of
scalar potentials ¢ and ¥, and their domains of definition
(0<r <rop+n(z,t) and —c0 < zZ < o0) coinside.

4. Exact wave solutions

In section 4 we’ll find the exact solutions of the magnetic
fluid motion equations corresponding to the limiting case
u > 1. It is clear that the undisturbed state of the system
corresponds to a trivial solution

n=0, ¢=0, p=Hoz

of motion equations. Let’s represent the potential ¥ as a
sum of the unperturbed solution and perturbation ¥ (in the
unperturbed state ¥ = 0):

¥(r,z,t) =Hoz +¥(r, z,1).

The perturbed potential W, similar as initial 3, satisfy the
Laplace equation

W 10v 3w

b o— 4+ —=0. 2
8r2+28r+822 0 (26)

The boundary conditions for it, as can be easily obtained
from (22)—(24), have the form

o
e :O’ :O’ 27
=0, (27)
v —0, |z|]— oo, (28)
on 0¥  dn d¥ B
%z ar azaz | Tlotn@u. (29)

The equations describing nonlinear traveling waves are
obtained from the above equations of motion by substituting

n(z.t) =1t 2 FC)., (1. 2.1) = p*(r, 2, 7CL),

U(r, z,t) = WE(r, z, FCt), (30)

where the upper signs correspond to the waves propagating
in positive direction of the axis z with a certain velocity
C > 0, and the lower ones in negative direction. The waves
corresponding to the substitution (30) propagate without
distortion: their profile does not change in coordinate
systems moving with the waves. As seen from (5) and (26),
functions ¢ and W* meet the Laplace equations

82¢:|: 1 a¢:t 82¢:t

oz T2 ar T O

PRV 1 0wt 32yt

ar2 +§ ar + 9z2 =0 (31)

with conditions arising from (7), (8), (18), (27)—(29):

dpT W
— =0, — =0, r=0, 32
ar ar (32)
¢t —0, ¥F -0, |z|] - oo, (33)
Car,i _ 8¢i ani 8¢i
9z  or 9z 9z’
Int  9UE  gnT T
OL:——L—,r:roJrni. (34)

0z ar dz 0z

This shows that the functions ¢ and W are defined by
the same ( up to constants in (34)) equations, and therefore
are related by a simple relationship:

CU* = FHop*. (35)

Such a simple linear relationship is due to the fact that
for the considered traveling waves in coordinate systems
moving with the waves, the fluid velocity is directed
tangentially to the boundary, ie. it behaves similarly to
the magnetic field in the limit u > 1.

Technical Physics, 2025, Vol. 70, No. 6
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Given the coupling (35), the non-stationary Bernoulli
equation (25) will be expressed as

SO T I T L

oz T2\ or 9z oC 9z

2

+

popH3 (M)*)z

2
popHG (d¢*
e \ o) T °( T =ro+nt

2pC2 \ oz

and, as can be easily noticed, is factorized as

pouHS  IN[(995\* (965 \*_ _9g*] _
(zpcz ‘5)[(?) +(W) ﬂc?} =0,

r=ro+n.

Obviously, the last equation turns into an identity when

C = Hov/tot/p = Va.

As a result, there are no restrictions on the profile of
traveling waves n*: it turns out to be arbitrary. In this
case, the potential ¢+ (and, consequently, the associated
potential W*) is found from the given n* via the Laplace
equation (31) with boundary conditions (32)—(34). We
write down the relationships between the potentials ¢
and 1, as well as the velocity and magnetic field vectors,
v and H, that arise when considering traveling waves:

¥ =Hoz ¥ ¢\/p/(uop), H=Hoe, Fv+/p/(tor). (36)

For the solutions found, the velocity of propagation of
nonlinear waves along the axis z does not depend on their
profile, and in absolute value is equal to Alfven velocity Va.
In fact, this means that the evolution of the free surface of
the jet is described by the simplest linear equation

an an

i +Va 5 0, (37)
to which the wave equation (3) is reduced when considering
separately the waves propagating in the direction (upper
sign) and against the direction (lower sign) of the axis z.

Thus, non-linearity does not lead to distortion of the
profile of arbitrary amplitude waves, which ensures their
structural stability.

5. The analogy with Alfven waves

In the exact wave solutions obtained above, there is
a certain analogy with Alfven waves propagating in an
unlimited space. The equations of magnetic hydrodynamics
of an incompressible perfectly conducting non-viscous fluid
with u = 1 in the external homogeneous magnetic field have
the following form [22]:

% + (vV)H = (HV)v, (38)

Technical Physics, 2025, Vol. 70, No. 6

a H|?
P [a—: + (vV)v} - —V(p—i— ‘%) + o (HV)H,
(39)
V-H=0, V-v=0, (40)
v —0, H— Hpe;, [r| — 0. (41)

A nontrivial family of exact solutions to these equations
can be obtained using the following couplings between
unknown functions v, H, and p [22]:

H = Hoe, T v/p/uo, (42)
2
p+ ‘L@ = const. (43)

Coupling (42) coincides with the coupling (36) earlier
used for u = 1. The equations (38)—(41) turn out to be
compatible with conditions (42) and (43), while the pair
of equations (38) and (39) is reduced to a single simplest
wave equation

av av

E:I:VAEZO, VA:HO\/M7 (44)

coinciding in form with (37). The solution (44) is

v =vE(X, Y, Z, FVat),

where v* are arbitrary vector-functions describing the

disturbances of the velocity field (as well as related fields H
and p) propagating without distortion with Alfven speed Va
along the direction (upper sign), or against the direction
(lower sign) of external magnetic field, ie. axis z. The
only constraints on v* are the following non-burdensome
conditions following from equations (40), (41):

Vvt =0,

vt -0, |r| = .

Thus, despite the obvious fundamental differences in the
formulation of problems (in our case, the fluid is non-
conductive and occupies an area bounded by a free surface;
for classical Alfven waves, the fluid is perfectly conducting
and occupies the entire space), the dynamics of nonlinear
traveling waves in both systems are similar. Nonlinear waves
can propagate (individually) in the direction and against the
direction of an external magnetic field without distortion.

Conclusion

This paper demonstrates that waves of arbitrary ampli-
tude can propagate without distortion along the surface
of a cylindrical jet of a magnetic fluid placed in a strong
magnetic field of a coaxial solenoid. This situation is realized
for a fluid with a high value of magnetic permeability.

This behavior of waves on the jet surface corresponds
to the situation where their propagation is described by a
pair of linear equations (37): one equation for waves in
the positive and the other in the negative direction of the
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axis z. However, this does not mean that the influence
of nonlinearity may be neglected. The nonlinearity will
determine the interaction of oppositely directed waves. For
waves on a flat surface of a dielectric/magnetic fluid in a
tangential electric/magnetic field, a similar interaction was
considered in the works [31-35]. It was found that in
a collision the counter-propagating solitary waves conserve
momentum and energy [31]. In this case, the waves do not
retain their shape. They deform, which eventually leads to
the formation of singularities — regions with large gradients
of velocities and fields [32]. A similar consideration for a
jet is complicated by the fact that the method of dynamic
conformal transformations used in [31,32] is not applicable
in cylindrical geometry. Nevertheless, it is natural to assume
that the counter-propagating waves will interact in a similar
way.
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