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Introduction

Magnetic field tangential to the free surface of magnetic

fluid has a stabilizing effect on it [1–4] (instead, normal field,

leads to destabilization of the system [1,3,5]). This effect

can be used to stabilize fluid jets, i.e., to suppress Plateau-

Rayleigh capillary instability. The stability of a cylindrical

jet of a non-conducting magnetic fluid in the axial magnetic

field was first analyzed in [6]; the findings were developed

in [7,8] (studies of stability of the conducting fluid jets

within MHD model were conducted in [9,10]). The stability
of an axisymmetric jet of a magnetic fluid in the presence of

all components of an external magnetic field was analyzed

in [11] (see also recent paper [12]). Such studies are

important for understanding the scenarios of jet decay and

subsequent droplet formation [13]. Of considerable interest

is the study of the effect of an azimuthal magnetic field on

a cylindrical layer of magnetic fluid surrounding a current

conductor [14,15]. The possibility of propagation of solitary

axisymmetric waves has been experimentally demonstrated

for such a system [16]. Nonlinear theory has developed,

for example, in [17,18] (small amplitude waves) and [19,20]
(strongly nonlinear waves).

This paper studies the propagation of strongly linear

axisymmetric waves along the surface of a cylindrical jet

of a magnetic fluid in the presence of a strong external

axial magnetic field. The law of linear wave dispersion for

such a system was obtained in [6,8]. In [21], a weakly

nonlinear (i.e., for small-amplitude surface perturbations)
theory of wave propagation was proposed for this problem:

the nonlinear Schrodinger equation for the envelope of a

wave packet was derived, and its modulation instability

was described. We demonstrate that in the case of a

fluid with high magnetic permeability, one may go beyond

considering the waves of small amplitude. It is possible

to get exact wave solutions delineating the propagation of

perturbations of the cylindrical jet boundary of an arbitrary

amplitude (i.e. comparable to both the wavelength and

the radius of the jet). Such solutions are similar in a

number of properties to the well-known solutions describing

the propagation of Alfven waves in an unlimited perfectly

conducting fluid [22,23]. Despite the qualitative differences

(fundamentally different geometries, media with different

physical properties; in fact, only the presence of an external

homogeneous magnetic field is common), the equations

of motion in both cases admit solutions where arbitrary

nonlinear waves can propagate at a constant speed along

the field direction.

It should be noted that from a mathematical point of

view, the problem of magnetic fluid behavior in external

magnetic field is similar to the problem of behavior of

a dielectric fluid in external electric field — the corre-

sponding equations coincide after replacing the magnetic

field with electric one and magnetic permeability with

dielectric permittivity [1]. In studies [24–27] , it was

found that nonlinear waves of arbitrary configuration can

propagate without distortion along the initially flat free

surface of an ideal dielectric fluid along the direction of

external tangential electric field. This situation is realized

for a fluid with a high value of dielectric constant in

case of a sufficiently strong field, when the impact of

electrostatic forces becomes dominant. The findings from

the present study may be considered as a generalization

of the results of [24–27] to another, cylindrical, — system

geometry.

1042



Propagation of finite amplitude waves along a cylindrical jet of magnetic fluid in an axial magnetic field 1043

1. Dispersion relation

Let us consider the evolution of waves on the free surface

of an ideal incompressible non-conductive magnetic fluid

having constant magnetic permeability µ. In the undisturbed

state, the jet is an infinitely long circular cylinder with a

radius of r0 — the geometry of the problem is shown

in Fig. 1. The jet is placed in an external homogeneous

magnetic field with a strength of H0, directed along its axis.

Similar to [8] we believe that the field is generated by a

solenoid with a radius of R0 with its axis coinciding with

the jet axis.

Let’s introduce the function η which determines defor-

mation of the jet surface. The shape of its surface is de-

scribed by equation r = r0 + η(θ, z , t), where {r, θ, z} are

cylindrical coordinates, t is time. In linear approxima-

tion, i.e., for small amplitude deformations |∂η/∂z | ≪ 1

and |∂η/∂θ| ≪ r0, the system behavior is fully described

by the dispersion relation corresponding to expression

η ∝ exp[i(nθ + kz − ωt)], where n = 0, 1, 2 . . . is the az-

imuthal wavenumber, k is axial wavenumber, ω is frequency.

Dispersion law is expressed as follows [8]:

ω2 =
µ0H2

0(µ−1)2k2I ′n(kr0)
ρ[µI ′n(kr0)−AIn(kr0)]

+
αk[n2+(kr0)2−1]I ′n(kr0)

ρr20In(kr0)
,

(1)
where value A is specified as

A =
I ′n(kr0)Kn(kR0) − In(kR0)K′

n(kr0)
In(kr0)Kn(kR0) − In(kR0)Kn(kr0)

.

Here µ0 is magnetic constant, ρ is density of fluid, α is

surface tension coefficient, In and Kn are modified Bessel

functions of the first and kind of order n, and L′
n and

K′
n are their derivatives with respect to argument (for the

environment surrounding the jet, we consider the density to

be zero, and the magnetic permeability be equal to unit).
The first term on the right-hand side of (1) is responsible

for the influence of magnetic field, and the second for the

influence of capillary effects.

The jet surface is unstable with respect to perturbations

with wave numbers k and n for which the right-hand side

is negative and, accordingly, the frequency ω is imaginary.

In paper [8], a detailed stability analysis was carried out,

r

z

r
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0
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Figure 1. Geometry of the problem (schematic representation).

indicating the stabilizing effect of the magnetic field on

the jet. Note that findings of [8] are a generalization of

the results of the pioneering work [6], which examined the

stability of a magnetic fluid jet in a homogeneous magnetic

field in unlimited space. The dispersion law from [6] may

be found from (1) by examining the limit R0 ≫ r0 . Because
the asymptotics are true,

In(x) ≈ ex

√
2πx

, Kn(x) ≈ e−x

√
2x/π

, x → ∞,

in this limit we have A → K′
n(kr0)/Kn(kr0), i.e. in (1) the

dependence on the solenoid radius fades away.

Let λ be a characteristic spatial scale of the jet surface

perturbations. From general considerations, it is clear that

for small-scale perturbations (λ ≪ r0), the term responsible

for capillary effects will prevail in the dispersion law (1).
Indeed, in this limit, the geometry of the problem changes

from cylindrical to flat. Then the first term on the right

side (1) will have an order of λ−2, and the second term

of λ−3 [1–3]. As a result, at sufficiently small λ, capillary

forces prevail over magnetic ones.

We will consider large-scale surface perturbations com-

parable to the radius of the jet, λ ∼ r0, or, in the terms of

wave numbers k and n,
√

(n/r0)2 + k2 = O(r−1
0 ). For such

perturbations in a sufficiently strong magnetic field, the term

responsible for its influence in the law of dispersion (1) will

dominate. The characteristic magnetic pressure is estimated

as pm = µ0µH2
0/2; the capillary pressure as pα = α/r0 . We

introduce the dimensionless parameter δ = pm/pα, which

characterizes the relative contribution of magnetic and

capillary pressures. We will assume the magnetic field to

be strong if δ ≫ 1 and, as a result, capillary effects can be

ignored: wave propagation will be entirely determined by

the influence of the magnetic field.

In this paper, we will consider a medium with high

magnetic permeability, µ ≫ 1, which is quite feasible for

ferromagnetic fluids [28]. As a result of expansion of the

right-hand side of (1) in small parameter 1/µ, the dispersion

law takes a simple algebraic form

ω2 =
µ0µH2

0k2

ρ

(

1 + O(µ−1)
)

.

When introducing the Alfven velocity VA = H0

√
µ0µ/ρ ,

we obtain

ω2 ≈ V 2
A k2. (2)

Thus, for the case µ ≫ 1, when condition δ ≫ 1 (strong
magnetic field) is fulfilled, the dispersion relation is radically

simplified. For large-scale perturbations of the jet surface

(λ ∼ r0), there’s no more any dependence on azimuthal

number n, on surface tension α, as well as on geometric

parameters r0 and R0.

For our subsequent analysis, it is essential to assume that

the magnetic permeability µ is constant, i.e., independent

of the magnetic field. For ferromagnetic fluids, this

approximation is valid if the field strength is less than a
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certain threshold, which we denote as Hc . Let’s consider

how such a requirement can be combined with the strong

field condition δ ≫ 1.

Let’s estimate the value of Hc for the ferrofluids used in

the experiments. From [3] it is known that for a colloidal

ferrofluid, the magnetization M depends linearly on the

strength of the applied magnetic field at relatively low

H0. The ratio M ≈ χi H0 is valid, where the proportionality

coefficient χi is the so-called initial magnetic susceptibility.

At larger values of H0 the magnetization approaches the

state of saturation: M ≈ Ms = const. As the boundary

between these limits, it is natural to take the value of

the field strength Hc , for which M = Ms/2. Then, we’ll

obtain Hc = Ms/(2χi). For example, in the studies [29] a

ferrofluid was used for which χi = 7.0, Ms = 51.4 kA/m,

α = 23.5mN/m. For the fluid permeability we have

µ = 1 + χi = 8.0, i.e. the condition µ ≫ 1 is properly

fulfilled. For the threshold field strength, the estimate

is Hc = 3.7 kA/m. The value H0 should not exceed this

value so that the magnetic permeability can be considered

constant. When H0 = Hc for r0 = 5mm we find δ = 14.4,

i.e. condition δ ≫ 1 for magnetic forces prevalence over

the capillary ones is fulfilled. It follows from this that it

is possible to select such a magnetic fluid and such values

of external field strength that three conditions used in this

paper will be fulfilled simultaneously: µ ≫ 1, δ ≫ 1 and

H0 ≤ Hc .

Let’s return to the discussion of the dispersion relation. In

terms of perturbation η of the jet boundary, the dispersion

law (2) corresponds to the linear wave equation

∂2η

∂t2
≈ V 2

A
∂2η

∂z 2
. (3)

Its solution is

η ≈ η+(z −VAt, θ) + η−(z + VAt, θ), (4)

where η± are arbitrary functions (with obvious limitations

for linear waves |∂η±/∂z | ≪ 1 and |∂η±/∂θ| ≪ r0) that

define the shape of waves propagating without distortion

in positive and negative directions of z axis with constant

speed VA.

Below, we will analyze the reasons resulting in such

system behavior and also demonstrate that some of our

conclusions about the dynamics of the jet boundary linear

perturbations may be extended to the general, nonlinear

case.

2. Motion equations

As was demonstrated in section 1, it is of interest to

consider the behavior of a jet of magnetic fluid under the

action of magnetic forces only, i.e., without taking into

account the influence of capillary forces. Let’s consider this

fluid motion as vortex-free. Then we can introduce a scalar

velocity potential φ so that the velocity vector is defined as

r

z

r0

H0

r = r  + η(z, t)0

Figure 2. Spatially localized axisymmetric perturbation of the

cylindrical jet surface (schematically).

its gradient: ν = ∇φ. For an incompressible fluid, we have

∇ · ν ≡ 0 and, therefore, the potential satisfies the Laplace

equation ∇2φ = 0.

It was shown above that in the limiting case µ ≫ 1, the

dispersion law does not contain the azimuthal number n.
This gives a reason to neglect azimuthal perturbations of the

jet surface, i.e., to consider only axisymmetric perturbations

η = η(z , t) (this corresponds to n = 0) (Fig. 2). In the ax-

isymmetric case φ = φ(r, z , t), and the Laplace equation

for the velocity potential is written as

∂2φ

∂r2
+

1

r
∂φ

∂r
+
∂2φ

∂z 2
= 0. (5)

It should be solved with the following boundary condi-

tions:

∂φ

∂t
+

1

2

(

∂φ

∂r

)2

+
1

2

(

∂φ

∂z

)2

=

− p
ρ

+ f (t), r = r0 + η(z , t), (6)

∂η

∂t
=
∂φ

∂r
− ∂η

∂z
∂φ

∂z
, r = r0 + η(z , t), (7)

∂φ

∂r
= 0, r = 0, (8)

where p = p(r, z , t) is fluid pressure, and f is arbitrary

function of time. Condition (6), which is often called

dynamic, has the meaning of the unsteady Bernoulli

equation taken at the free boundary of the jet. Kinematic

condition (7) relates the velocity on the fluid free surface

to the function η, which defines its shape. Condition (8)
corresponds to the fact that the velocity on the jet axis has

only one axial component.

Let’s consider only spatially localized perturbations of the

jet boundary, i.e. η → 0 at |z | → ∞ (Fig. 2). Then, at

infinity the following is true

∂φ

∂r
→ 0,

∂φ

∂z
→ 0, |z | → ∞. (9)

The pressure in (6) p, according to [30], is set by the

expression (here we do not take into account capillary

Technical Physics, 2025, Vol. 70, No. 6
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effects)

p = patm +
µ0µ

2
(H2

n − H2
τ ) −

µ0

2
(H̃2

n − H̃2
τ ), (10)

where patm is constant external (atmospheric) pressure,

Hτ and H̃τ are tangential components, whereas Hn and

H̃n are components of the magnetic field strength inside the

fluid and, respectively, outside it, which are normal to the

free boundary. The standard boundary conditions shall be

satisfied for the magnetic field components

Hτ = H̃τ , µHn = H̃n. (11)

Using them, pressure (10) can be expressed through the

components Hτ and Hn of the magnetic field strength inside

the fluid:

p = patm − µ0(µ − 1)

2
(µH2

n − H2
τ ). (12)

The magnetic field in a jet of a magnetic

fluid (H = {Hr , 0, Hz}) and in its surrounding space

(H̃ = {H̃r , 0, H̃z}) is found from Maxwell’s equations for a

nonconducting medium in the magnetostatic approximation:

∇×H = 0, ∇ ·H = 0, ∇× H̃ = 0, ∇ · H̃ = 0. (13)

These equations should be solved together with condi-

tions on the free boundary (11), conditions on the system

axis and on the solenoid surface,

Hr = 0, r = 0, (14)

H̃r = 0, r = R0, (15)

as well as with conditions on infinity

Hz → H0, Hr → 0, |z | → ∞, (16)

H̃z → H0, H̃r → 0, |z | → ∞. (17)

Since the velocity potential may be selected somewhat

arbitrary, instead of a couple of conditions (9) it is possible

to use the only condition

φ → 0, |z | → ∞. (18)

In this case, the function f included in the Bernoulli

equation will be uniquely defined as

f =
patm

ρ
− µ0(µ − 1)H2

0

2ρ
.

Taken together, the equations given in sec. 2 fully describe

the nonlinear evolution of perturbations of the boundary

of a magnetic fluid jet under the action of external axial

magnetic field.

3. The limit of high magnetic
permeability

Let us consider the case of high magnetic permeability

µ ≫ 1, which can be realized for ferromagnetic fluids.

In sec. 1 based on the analysis of the dispersion law (1),
we’ve demonstrated that in this limit linear waves propagate

along the jet axis in positive and negative directions

without distortion: see solution (4). The condition for

the applicability of linear approximation is the smallness of

the jet deformations, |∂η/∂z | ≪ 1. Here we will consider

the propagation of strongly nonlinear waves, i.e., the case

of perturbations of the jet boundary with large inclination

angles, ∂η/∂z = O(1).
Analyzing the conditions (11) and (14)−(17), we may

conclude that the values H̃τ /H0, Hτ /H0 and H̃n/H0 in

expansion in small parameter 1/µ relate to O(1) order, and

the value Hn/H0 to the higher order of smallness O(1/µ).
The normal component of the magnetic field strength in a

fluid turns out to be much smaller in absolute value than the

tangential component, and it can be assumed that the field

lines are directed tangentially to the curved boundary. This

leads to situation that the problem of finding the distribution

of the magnetic field inside the jet is separated from the

general problem of finding the distribution of the field in the

entire space. For the limiting case µ ≫ 1, we can identically

put

Hn = 0, (19)

and search for the field distribution where the boundary line

of force will lie on the fluid free surface.

It should be stresses that the problem of finding the

field distribution outside the fluid does is not separated

from the original problem for the limit µ ≫ 1. To solve

it, it is first necessary to find the field distribution inside

the jet, and thereby determine Hτ , and only then solve

an additional problem outside the jet with the boundary

condition H̃τ = Hτ . As a result, the distribution H̃n will be

found, in particular. This, taking into account the coupling

Hn = H̃n/µ, will make it possible, with a large but finite

µ, to calculate the normal component of the magnetic field

inside the fluid, i.e., to actually make the next iteration (in
the first iteration Hn ≡ 0). However, as it turns out, for the
purposes of this work, it is not necessary to implement such

an iterative procedure. To describe the fluid motion, we

need to find pressure (12) at the boundary of the fluid due

to the influence of the magnetic field, and it can be found

using only the field distribution inside the jet. Indeed, for

the terms included in the right-hand side of (12), we have

H2
τ /H2

0 = O(1), µH2
n/H2

0 = O(1/µ).

Thus, the term in (12) containing the normal component

of the magnetic field is small, and it is enough to consider

only first approximation where Hn ≡ 0. Then, in the basic

order of expansion in a small parameter 1/µ, we have

p ≈ −µ0µH2
τ

2
, f ≈ −µ0µH2

0

2ρ
. (20)
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Taking into account the magnetostatic equations (13), it
is possible to reduce the number of unknown functions

by introducing an auxiliary scalar potential ψ(r, z , t) so

that H = ∇ψ. This potential satisfies the Laplace equation

∇2ψ = 0, written in the case of axial symmetry of the

problem as

∂2ψ

∂r2
+

1

r
∂ψ

∂r
+
∂2ψ

∂z 2
= 0. (21)

We’ll get the boundary conditions for (21) by passing

in (14), (16), (19) from the components of magnetic field

to the potential ψ via the relations Hr = ∂ψ/∂r and

Hz = ∂ψ/∂z . We find

∂ψ

∂r
= 0, r = 0, (22)

ψ → H0z , |z | → ∞, (23)

∂ψ

∂r
− ∂η

∂z
∂ψ

∂z
= 0, r = r0 + η(z , t). (24)

Here, we used the expression

Hn

√

1 +
(∂η

∂z

)2

= Hr −
∂η

∂z
Hz ,

binding the normal component of the magnetic field

strength Hn with axial and radial components Hz and Hr .

Finally, when using the potential ψ and taking into

account the relations (19) and (20), the unsteady Bernoulli

equation (6) is rewritten as

∂φ

∂t
+

1

2

(

∂φ

∂r

)2

+
1

2

(

∂φ

∂z

)2

=
µ0µ

2ρ

(

∂ψ

∂r

)2

+
µ0µ

2ρ

(

∂ψ

∂z

)2

− µ0µH2
0

2ρ
, r = r0 + η(z , t). (25)

The remaining equations defining the dynamics of the

fluid remain unchanged. Let’s again focus on an important

feature of the motion equations for the case µ ≫ 1: the

behavior of a fluid is completely determined by a pair of

scalar potentials φ and ψ, and their domains of definition

(0 ≤ r ≤ r0 + η(z , t) and −∞ < z < ∞) coinside.

4. Exact wave solutions

In section 4 we’ll find the exact solutions of the magnetic

fluid motion equations corresponding to the limiting case

µ ≫ 1. It is clear that the undisturbed state of the system

corresponds to a trivial solution

η = 0, φ = 0, ψ = H0z

of motion equations. Let’s represent the potential ψ as a

sum of the unperturbed solution and perturbation 9 (in the

unperturbed state 9 = 0):

ψ(r, z , t) = H0z +9(r, z , t).

The perturbed potential 9, similar as initial ψ, satisfy the

Laplace equation

∂29

∂r2
+

1

2

∂9

∂r
+
∂29

∂z 2
= 0. (26)

The boundary conditions for it, as can be easily obtained

from (22)−(24), have the form

∂9

∂r
= 0, r = 0, (27)

9→ 0, |z | → ∞, (28)

H0

∂η

∂z
=
∂9

∂r
− ∂η

∂z
∂9

∂z
, r = r0 + η(z , t). (29)

The equations describing nonlinear traveling waves are

obtained from the above equations of motion by substituting

η(z , t) = η±(z ∓Ct), φ(r, z , t) = φ±(r, z ,∓Ct),

9(r, z , t) = 9±(r, z ,∓Ct), (30)

where the upper signs correspond to the waves propagating

in positive direction of the axis z with a certain velocity

C > 0, and the lower ones in negative direction. The waves

corresponding to the substitution (30) propagate without

distortion: their profile does not change in coordinate

systems moving with the waves. As seen from (5) and (26),
functions φ± and 9± meet the Laplace equations

∂2φ±

∂r2
+

1

2

∂φ±

∂r
+
∂2φ±

∂z 2
= 0,

∂29±

∂r2
+

1

2

∂9±

∂r
+
∂29±

∂z 2
= 0 (31)

with conditions arising from (7), (8), (18), (27)−(29):

∂φ±

∂r
= 0,

∂9±

∂r
= 0, r = 0, (32)

φ± → 0, 9± → 0, |z | → ∞, (33)

∓C
∂η±

∂z
=
∂φ±

∂r
− ∂η±

∂z
∂φ±

∂z
,

H0

∂η±

∂z
=
∂9±

∂r
− ∂η±

∂z
∂9±

∂z
, r = r0 + η±. (34)

This shows that the functions φ± and 9± are defined by

the same ( up to constants in (34)) equations, and therefore

are related by a simple relationship:

C9± = ∓H0φ
±. (35)

Such a simple linear relationship is due to the fact that

for the considered traveling waves in coordinate systems

moving with the waves, the fluid velocity is directed

tangentially to the boundary, i.e. it behaves similarly to

the magnetic field in the limit µ ≫ 1.

Technical Physics, 2025, Vol. 70, No. 6
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Given the coupling (35), the non-stationary Bernoulli

equation (25) will be expressed as

∓C
∂φ±

∂z
+

1

2

(

∂φ±

∂r

)2

+
1

2

(

∂φ±

∂z

)2

= ∓µ0µH2
0

ρC
∂φ±

∂z

+
µ0µH2

0

2ρC2

(

∂φ±

∂r

)2

+
µ0µH2

0

2ρC2

(

∂φ±

∂z

)2

, r = r0 + η±

and, as can be easily noticed, is factorized as

(

µ0µH2
0

2ρC2
− 1

2

)[(

∂φ±

∂r

)2

+

(

∂φ±

∂z

)2

∓ 2C
∂φ±

∂z

]

= 0,

r = r0 + η±.

Obviously, the last equation turns into an identity when

C = H0

√

µ0µ/ρ = VA.

As a result, there are no restrictions on the profile of

traveling waves η±: it turns out to be arbitrary. In this

case, the potential φ± (and, consequently, the associated

potential 9±) is found from the given η± via the Laplace

equation (31) with boundary conditions (32)−(34). We

write down the relationships between the potentials φ

and ψ, as well as the velocity and magnetic field vectors,

ν and H, that arise when considering traveling waves:

ψ = H0z ∓ φ
√

ρ/(µ0µ), H = H0ez ∓ ν

√

ρ/(µ0µ). (36)

For the solutions found, the velocity of propagation of

nonlinear waves along the axis z does not depend on their

profile, and in absolute value is equal to Alfven velocity VA.

In fact, this means that the evolution of the free surface of

the jet is described by the simplest linear equation

∂η

∂t
±VA

∂η

∂z
= 0, (37)

to which the wave equation (3) is reduced when considering

separately the waves propagating in the direction (upper
sign) and against the direction (lower sign) of the axis z .
Thus, non-linearity does not lead to distortion of the

profile of arbitrary amplitude waves, which ensures their

structural stability.

5. The analogy with Alfven waves

In the exact wave solutions obtained above, there is

a certain analogy with Alfven waves propagating in an

unlimited space. The equations of magnetic hydrodynamics

of an incompressible perfectly conducting non-viscous fluid

with µ = 1 in the external homogeneous magnetic field have

the following form [22]:

∂H

∂t
+ (ν∇)H = (H∇)ν, (38)

ρ

[

∂ν

∂t
+ (ν∇)ν

]

= −∇
(

p +
µ0|H|2

2

)

+ µ0(H∇)H,

(39)
∇ ·H = 0, ∇ · ν = 0, (40)

ν → 0, H → H0ez , |r| → ∞. (41)

A nontrivial family of exact solutions to these equations

can be obtained using the following couplings between

unknown functions ν , H, and p [22]:

H = H0ez ∓ ν

√

ρ/µ0, (42)

p +
µ0|H|2

2
= const. (43)

Coupling (42) coincides with the coupling (36) earlier

used for µ = 1. The equations (38)−(41) turn out to be

compatible with conditions (42) and (43), while the pair

of equations (38) and (39) is reduced to a single simplest

wave equation

∂ν

∂t
±VA

∂ν

∂z
= 0, VA = H0

√

µ0/ρ, (44)

coinciding in form with (37). The solution (44) is

ν = ν
±(x , y, z ,∓VAt),

where ν
± are arbitrary vector-functions describing the

disturbances of the velocity field (as well as related fields H

and p) propagating without distortion with Alfven speed VA

along the direction (upper sign), or against the direction

(lower sign) of external magnetic field, i.e. axis z . The

only constraints on ν
± are the following non-burdensome

conditions following from equations (40), (41):

∇ · ν± = 0,

ν
± → 0, |r| → ∞.

Thus, despite the obvious fundamental differences in the

formulation of problems (in our case, the fluid is non-

conductive and occupies an area bounded by a free surface;

for classical Alfven waves, the fluid is perfectly conducting

and occupies the entire space), the dynamics of nonlinear

traveling waves in both systems are similar. Nonlinear waves

can propagate (individually) in the direction and against the

direction of an external magnetic field without distortion.

Conclusion

This paper demonstrates that waves of arbitrary ampli-

tude can propagate without distortion along the surface

of a cylindrical jet of a magnetic fluid placed in a strong

magnetic field of a coaxial solenoid. This situation is realized

for a fluid with a high value of magnetic permeability.

This behavior of waves on the jet surface corresponds

to the situation where their propagation is described by a

pair of linear equations (37): one equation for waves in

the positive and the other in the negative direction of the
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axis z . However, this does not mean that the influence

of nonlinearity may be neglected. The nonlinearity will

determine the interaction of oppositely directed waves. For

waves on a flat surface of a dielectric/magnetic fluid in a

tangential electric/magnetic field, a similar interaction was

considered in the works [31–35]. It was found that in

a collision the counter-propagating solitary waves conserve

momentum and energy [31]. In this case, the waves do not

retain their shape. They deform, which eventually leads to

the formation of singularities — regions with large gradients

of velocities and fields [32]. A similar consideration for a

jet is complicated by the fact that the method of dynamic

conformal transformations used in [31,32] is not applicable
in cylindrical geometry. Nevertheless, it is natural to assume

that the counter-propagating waves will interact in a similar

way.
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