The effect of the substrate material on the structure, topology, composition, optical and mechanical properties of chemically deposited PbS films
Maskaeva L. N. 1,2, Pozdin A. V. 1, Markov V. F.1,2, Mostovshchikova E. V. 3, Voronin V. I. 3, Mushnikov P. N. 4, Pavlova A. Yu. 3
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2Ural Institute of State Fire Service of EMERCOM of Russia, Yekaterinburg, Russia
3M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
4Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru, andrej.pozdin@yandex.ru, mostovsikova@imp.uran.ru

PDF
The article presents the results of comprehensive studies of the influence of the substrate material on the structure, composition, topology and optical properties of chemically deposited lead sulfide films using X-ray diffraction, electron and atomic force microscopy methods, with an estimation of the mechanical stresses arising in the volume of the films and at the film-substrate interface. It is found that the formation of the films on fused quartz and synthetic sapphire substrates occurs from crystallites with a predominant (111) crystallographic orientation, and on photo glass and microscope slide glass substrates - from crystallites with both (111) and (220) orientations. The effect of preliminary etching of substrates in HF acid on the surface topology and features of nucleation of the PbS films is discussed. It is concluded that the surface relief of lead sulfide films does not repeat the relief of the substrates. Using fractal formalism, it is shown that the formation of the PbS films on all studied substrates is described by a model of particle association of the cluster-particle type in three-dimensional space. A correlation is revealed between the number of nanoparticles in the PbS layer and the band gap of the material. An increase in the magnitude of compressive stresses at the film-substrate interface is found within the range from -53.9 to -318.6 kN/m2 in the series slide glass-photo glass-sapphire-quartz. Keywords: chemical bath deposition, thin films, lead sulfide, substrate material, morphology, crystal structure, mechanical stresses.
  1. J. Singh. Electronic and optoelectronic properties of semiconductor structures (Cambridge University Press, 2007)
  2. M.Y.H. Thabit, N.M.S. Kaawash, D.I. Halge, P.M. Khanzode, V.N. Narwade, J.W. Dadge, S.S. Dahiwale, K.A. Bogle. Mater. Today: Process., 92, 876 (2023). DOI: 10.1016/j.matpr.2023.04.457
  3. E. Pentia, L. Pintilie, I. Matei, T. Botila, I. Pintilie. Infrared Phys. Technol., 44, 207 (2003). DOI: 10.1016/S1350-4495(02)00225-6
  4. Q. Lv, R. Li, L. Fan, Z. Huang, Z. Huan, M. Yu, H. Li, G. Liu. Sensors, 23, 8413 (2023). DOI: 10.3390/s23208413
  5. D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn. Sol. Energy Mater. Sol. Cells, 200, 109963 (2009). DOI: 10.1016/j.solmat.2019.109963
  6. B. Jiang, X. Liu, Q. Wang, J. Cui, B. Jia, Y. Zhu, J. Feng, Y. Qiu, M. Gu, Z. Ge, J. He. Energy Environ. Sci., 13 (2), 579 (2020). DOI: 10.1039/C9EE03410B
  7. P.M. Khanzode, D.I. Halge, V.N. Narwade, J.W. Dadge, K.A. Bogle. Optik, 226, 165933 (2021). DOI: 10.1016/j.ijleo.2020.165933
  8. V.F. Markov, L.N. Maskayeva. ZhAKh, 56 (8), 846 (2001) (in Russian)
  9. Z. Mamiyev, N.O. Balayeva. Mater. Today Sustain., 21, 100305 (2003). DOI: 10.1016/j.mtsust.2022.100305
  10. N. Zhu, A. Zhang, Q. Wang, P. He, Y. Fang. Electr.: Int. J. Dev. Fundam. Practical Asp. Electr., 16, 577 (2004). DOI: 10.1002/elan.200302835
  11. A.El. Madani, R. Essajai, A. Qachaou, A. Raidou, M. Fahoume, M. Lharch. Adv. Mater. Process. Technol., 8, 3413 (2022). DOI: 10.1080/2374068X.2021.1970986
  12. V.F. Markov, L.N. Maskaeva, E.V. Mostovshchikova, V.I. Voronin, A.V. Pozdin, A.V. Beltseva, I.O. Selyanin, I.V. Baklanova. PCCP, 24, 16085 (2022). DOI: 10.1039/D2CP01815B
  13. V.F. Markov, L.N. Maskaeva, P.N. Ivanov. Gidrokhimicheskoe osazhdenie plenok sul'fidov metallov: modelirovanie, eksperiment (UrO RAN, Ekaterinburg, 2006) (in Russian)
  14. U. Chalapathi, S.H. Park, W.J. Choi. Mater. Sci. Semicond. Process., 134, 106022 (2021). DOI: 10.1016/j.mssp.2021.106022
  15. A.P. Gaiduk, P.I. Gaiduk, A.N. Larsen. Thin Solid Films., 516, 3791 (2008). DOI: 10.1016/j.tsf.2007.06.122
  16. A. Sanchez-Martinez, O. Ceballos-Sanchez, D.E. Guzman-Caballero, J.A. Avila-Avendano, C.E. Perez-Garcia, M.A. Quevedo-Lopez, R. Ramirez. Ceram. Int., 47, 18898 (2021). DOI: 10.1016/j.ceramint.2021.03.230
  17. L.N. Maskaeva, A.V. Pozdin, V.F. Markov, V.I. Voronin. Semicond., 54 (12), 1309 (2020). DOI: 10.1134/S1063782620120209
  18. B. Abdallah, R. Hussein, N. Al-Kafri, W. Zetoun. Iranian J. Sci. Technol. A, 43, 1371 (2019). DOI: 10.1007/s40995-019-00698-1
  19. J. Sahadevan, S.E. Muthu, K. Kulathuraan, S. Arumugam, I. Kim, G.B.S. Pratha, P. Sivaprakash. Mater. Today Proc., 64, 1849 (2022). DOI: 10.1016/j.matpr.2022.06.311
  20. D.M.M. Atwa, I.M. Azzouz, Y. Badr. Appl. Phys. B, 103, 161 (2011). DOI: 10.1007/s00340-010-4311-4
  21. A.S. Obaid, M.A. Mahdi, Z. Hassan. Optoelectron. Adv. Mater. Rapid Commun., 6, 422 (2012)
  22. Q. Lv, R. Li, L. Fan, Z. Huang, Z. Huan, M. Yu, H. Li, G. Liu. Sensors, 23, 8413 (2023). DOI: 10.3390/s23208413
  23. N.I. Fainer, M.L. Kosinova, Yu.M. Rumyantsev, E.G. Salman, F.A. Kuznetsov. Thin Solid Films, 280, 16 (1996). DOI: 10.1016/0040-6090(95)08188-7
  24. A.E. Gorodetsky, A.V. Markin, V.L. Bukhovets, V.I. Zolotarevsky, R.H. Zalavutdinov, N.A. Babinov, A.M. Dmitriev, A.G. Razdobarin, E.E. Mukhin. Tech. Phys., 66 (2), 288 (2021). DOI: 10.1134/S1063784221020122
  25. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik. Sapphire: material, manufacturing, applications (Springer, NY., 2009)
  26. Electronic source. Available at: http://zcq-quartz.ru/quartz-1.html
  27. R. Velichko. SVCh-elektronika, 1, 66 (2016) (in Russian)
  28. V.G. Butkevich, V.D. Bochkov, E.R. Globus. Prikladnaya fizika, 6, 66 (2001) (in Russian)
  29. M.S. Mikhailenko, A.E. Pestov, M.V. Zorina, A.K. Chernyshev, N.I. Chkhalo, I.E. Shevchuk. J. Surf. Invest., 17, 1338 (2023). DOI: 10.1134/S102745102306037X
  30. G. Hodes. Chemical Solution Deposition Of Semiconductor Films (CRC Press, 2002)
  31. H.M. Rietveld. J. Appl. Crystallogr., 2, 65 (1969). DOI: 10.1107/S0021889869006558
  32. B.H. Toby, R.B. Von Dreele. J. Appl. Crystallogr., 46, 544 (2013). DOI: 10.1107/S002188981300353
  33. A.G. Khovansky. Matematicheskoe prosveshchenie, 17, 93 (2013) (in Russian)
  34. C.K. De, N.K. Misra. Indian J. Phys., A71, 535 (1997)
  35. M.J. Weber. Handbook Laser Science and Technology (CRC Press LLC, 2003)
  36. C. Douketis, Z. Wang, T.L. Haslett, M. Moskovits. Phys. Rev. B, 51, 11022 (1995). DOI: 10.1103/PhysRevB.51.11022
  37. W.W. Scanlon. J. Phys. Chem. Solids, 8, 423 (1959). DOI: 10.1016/0022-3697(59)90379-8
  38. F.D. Kasimov, A.E. Lyutfalibekova. Tekhnologiya i konstruirovanie v elektronnoj apparature, 1, 1 (2002) (in Russian)
  39. G.K. Williamson, W.H. Hall. Acta Metall., 1, 22 (1953). DOI: 10.1016/0001-6160(53)90006-6
  40. N. Choudhury, B.K. Sarma. Bull. Mater. Sci., 32, 43 (2009). DOI: 10.1007/s12034-009-0007-y
  41. M. Mozafari, F. Moztarzadeh, D. Vashaee, L. Tayebi. Physica E, 44, 1429 (2012). DOI: 10.1016/j.physe.2012.03.006
  42. P. Patnaik. Handbook of inorganic chemicals (McGraw-Hill, NY., 2003)
  43. L.A. Manuilov, G.I. Klyukovsky. Fizicheskaya himiya i himiya kremniya (Vysshaya shkola, M., 1962) (in Russian)
  44. Z.Ya. Khavin, V.A. Rabinovich. Kratkiy himicheskij spravochnik (Khimiya, LO, 1978) (in Russian)
  45. A. De Leon, M.C. Acosta-Enriquez, S.J. Castillo, A. Apolinar-Iribe. J. Sulfur Chem., 33, 391 (2012). DOI: 10.1080/17415993.2012.689481
  46. T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, R. Abdi-Ghaleh. Mater. Sci. Semicond. Process., 25, 197 (2014). DOI: 10.1016/j.mssp.2013.11.028
  47. E. Pentia, L. Pintilie, T. Botila, I. Pintilie, A. Chaparro, C. Maffiotte. Thin Solid Films, 434, 162 (2003). DOI: 10.1016/S0040-6090(03)00449-8
  48. V.F. Markov, L.N. Maskaeva. Russ. Chem. Bull., 62, 1523 (2014). DOI: 10.1007/s11172-014-0630-7
  49. A. De Leon, M.C. Acosta-Enriquez, S.J. Castillo, A. Apolinar-Iribe. J. Sulfur Chem., 33, 391 (2012). DOI: 10.1080/17415993.2012.689481
  50. V.V. Podlipnov, V.A. Kolpakov, N.L. Kazansky. Komp'yuternaya optika, 40, 830 (2016) (in Russian). DOI: 10.18287/2412-6179-2016-40-6-830-836
  51. A. Keller, S. Facsko, W. Moller. J. Phys. Condens. Matter., 21, 495305 (2009). DOI: 10.1088/0953-8984/21/49/495305
  52. A.H. Ayupova, R.R. Garafutdinov, A.V. Chemeris, R.F. Talipov. Vestnik Bashkirskogo un-ta, 17, 1677 (2012) (in Russian)
  53. B. Duan, J. Zhou, Y. Liu, M. Sun. J. Semicond., 35, 116001 (2014). DOI: 10.1088/1674-4926/35/11/116001
  54. M.Y. Mustafa, I. Hilmy, E.Y.T. Adesta. ARPN J. Eng. Appl. Sci., 10, 9736 (2015)
  55. M.S. Mikhailenko, A.E. Pestov, M.V. Zorina, A.K. Chernyshev, N.I. Chkhalo, I.E. Shevchuk. Poverhnost'. Rentgen., sinkhrotr. i neitron. issled. 12, 25 (2023) (in Russian). DOI: 10.31857/S1028096023120154
  56. D.S. Pashkevich. Chem. Phys., 13, 993 (2019). DOI: 10.1134/S1990793119060083
  57. V.A. Moshnikov, Y.M. Tairov, T.V. Khamova, O.A. Shilova. Zol'-gel' tekhnologiya mikro- i nanokompozitov (Lan, SPb, 2013) (in Russian)
  58. B.M. Smirnov Fizika fraktal'nykh klasterov (Nauka, M., 1991) (in Russian)
  59. J. Feder. Fractals (Plenum Press, NY., 1988)
  60. D.P. Vlasyuk, A.I. Mamykin, V.A. Moshnikov, E.N. Muratova. FKhS, 41 (5), 745 (2015) (in Russian)
  61. Y. Wang, A. Suna, W. Mahler, R. Kasowski. J. Chem. Phys., 87, 7315 (1987). DOI: 10.1063/1.453325
  62. A.N. Weiss. Nauchno-Tekhicheskie Vedomosti SPbGPU, 213, 9 (2015) (in Russian)
  63. L.B. Freund, S. Suresh. Thin film materials: stress, defect formation and surface evolution (Cambridge university press, 2004)
  64. L.N. Maskaeva, V.F. Markov, E.A. Fedorova, M.V. Kuznetsov. Russ. J. Appl. Chem., 91 (9), 1528 (2018). DOI: 10.1134/S1070427218090161
  65. A.R. Shugurov, A.V. Panin. Technical Phys., 65 (12), 1881 (2020). DOI: 10.1134/S1063784220120257
  66. G.E. Ayvazyan. Izv. NAN RA and GIUA. Ser. TN., 53 (1), 63 (2000) (in Russian)
  67. N.A. Dyuzhev, A.A. Dedkova, E.E. Gusev, A.V. Novak. Izv.vuz. Elektronika, 21 (4), 367 (2016) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru