Dedicated to the memory of Alexander Alexandrovich Tomasov On the Optimization of Energy Extraction from a Supercapacitor under an Impulse Load
Agafonov D. V. 1, Kuznetsova A R. 1, Kompan M. E. 2, Malyshkin V. G. 2
1Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: phti@lti-gti.ru, arinaspbgti@yandex.ru, kompan@mail.ioffe.ru, malyshki@ton.ioffe.ru

PDF
The problem of energy extraction from a supercapacitor (within the given duration tau) under an impulse load has been considered. It has been shown that for each tau there exists an optimal load value at which the maximum energy will be released. In a simple model of a single RC- element the problem can be solved analytically. For more complex models of supercapacitors (such as self-similar ladder RC- networks, tree-like RC- networks, etc.), numerical simulations have been conducted. The simulations have shown that the sharpness of the maximum decreases with increasing tau and with the degree of distributiveness of RC- network. A computer program has been developed to model impulse loads directly in the time domain for any equivalent supercapacitor circuit. This allows to consider nonlinear systems and avoid the need for complex conversion of impedance Z(ω) into the time domain. The developed approach (together with the simulation program) can be directly applied to solving practical problems related to the impulse operation mode of supercapacitors. Keywords: supercapacitor modeling, Impedance Spectroscopy, IEC 62391, inverse relaxation, binary tree model, impulse load.
  1. Maxim Integrated, (2019), MAX1687 Step-Up DC-DC Converters with Precise, Adaptive Current Limit for GSM. https://datasheets.maximintegrated.com/en/ds/MAX1687-MAX1688.pdf
  2. D.V. Agafonov, A.R. Kuznetsova, M.E. Kompan, V.G. Malyshkin. J. Power Sources, 598, 234196 (2024). DOI: 10.1016/j.jpowsour.2024.234196
  3. V.G. Malyshkin. RC Simulation Program for Ngspice (2023), http://www.ioffe.ru/LNEPS/malyshkin/RCcircuit_ver2.zip
  4. A.J. Bard, L.R. Faulkner, H.S. White. Electrochemical Methods: Fundamentals and Applications (John Wiley \& Sons, 2022)
  5. A. Lasia. Electrochemical Impedance Spectroscopy and its Applications (Springer, 2002), DOI: 10.1007/978-1-4614-8933-7
  6. V.S. Bagotsky, A.M. Skundin, Y.M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors (John Wiley \& Sons, 2015), DOI: 10.1002/9781118942857
  7. Y. Cheng. IEEE Transactions on Energy Conversion, 25, 253 (2009). DOI: 10.1109/TEC.2009.2032619
  8. H. Yang. J. Energy Storage, 29, 101316 (2020). DOI: 10.1016/j.est.2020.101316
  9. A. Allagui, D. Zhang, A.S. Elwakil. Appl. Phys. Lett., 113, 253901 (2018). DOI: 10.1063/1.5080404
  10. S. Zhang, N. Pan. Advanced Energy Mater., 5, 1401401 (2015). DOI: 10.1002/aenm.201401401
  11. J.P. Baboo, E. Jakubczyk, M.A. Yatoo, M. Phillips, S. Grabe, M. Dent, S.J. Hinder, J.F. Watts, C. Lekakou. J. Power Sources, 561, 232762 (2023). DOI: 10.1016/j.jpowsour.2023.232762
  12. E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley \& Sons, 2018), DOI: 10.1002/9781119381860
  13. M.E. Kompan, V.P. Kuznetsov, V.G. Malyshkin. Tech. Phys., 55 (5), 692 (2010). DOI: 10.1134/S1063784210050142
  14. Maxwell Techonologies (2021), BCAP0005 P270 S01, ESHSR-0005C0-002R7, Document 3001974-EN.3, product list, and Test Procedures for Capacitance, ESR, Leakage Current and Self-Discharge Characterizations of Ultracapacitors. https://maxwell.com/wp-content/uploads/ 2021/08/1007239_EN_test_procedures_technote_2.pdf
  15. IEC 62391-1:2015 RLV (2015). Fixed Electric Double-Layer Capacitors for use in Electric and Electronic Equipment. https://webstore.iec.ch/publication/23570
  16. A. Burke, M. Miller. J. Power Sources, 196, 514 (2011). DOI: 10.1016/j.jpowsour.2010.06.092
  17. A. Allagui, A.S. Elwakil, B.J. Maundy, T.J. Freeborn. Chem. Electro Chem., 3, 1429 (2016). DOI: 10.1002/celc.201600249
  18. D.S. Il'yushchenkov, A.A. Tomasov, S.A. Gurevich. Tech. Phys. Lett., 46, 80 (2020). DOI: 10.1134/S1063785020010253
  19. S. Dutta Roy. Circuits, Systems, and Signal Processing, 34, 3661 (2015). DOI: 10.1007/s00034-015-0012-x
  20. A. Kartci, N. Herencsar, J.T. Machado, L. Brancik. Radioengineering, 29, 296 (2020). DOI: 10.13164/re.2020.0296
  21. A.A. Arbuzov, R.R. Nigmatullin. Russ. J. Electrochem., 45, 1276 (2009). DOI: 10.1134/S1023193509110081
  22. L. Herrera, C. Fan, V. Nguyen, D. Do, T. Horikawa, D. Nicholson. Carbon, 50, 500 (2012). DOI: 10.1016/j.carbon.2011.09.004
  23. P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, L. Hu. Advanced Energy Mater., 8, 1801392 (2018). DOI: 10.1002/aenm.201801392
  24. M.E. Kompan, V.G. Malyshkin. J. Power Sources, 484, 229257 (2021). DOI: 10.1016/j.jpowsour.2020.229257

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru