Kruglov A. V.
1, Serov D. A.
1, Belov A. I.
1, Koryazhkina M. N.
1, Antonov I. N.
1, Zubkov S. Yu.
1, Kriukov R.N.
1, Mikhailov A.N.
1, Filatov D.O.
1, Gorshkov O.N.
11Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: krualex@yandex.ru, serow.dim2015@yandex.ru, belov@nifti.unn.ru, mahavenok@mail.ru, ivant@nifti.unn.ru, zubkov@phys.unn.ru, kryukov@unn.ru, mian@nifti.unn.ru, dmitry_filatov@inbox.ru, gorshkov@nifti.unn.ru
In the present paper, memristors based on an Al2O3/ZrO2(Y) dielectric bilayer with an Al2O3 layer of 0, 3, 6 and 9 nm in thickness fabricated by magnetron sputtering, were investigated. The presence of the additional Al2O3 layer between the chemically active Ta electrode and the ZrO2(Y) functional dielectric allows localizing the sites of rupture and subsequent restore of the filaments during cyclic resistive switching and leads to an improvement in the stability of the resistive states of the memristor. The as fabricated memristor stacks with different thicknesses of the Al2O3 can be either in the conductive state or in the non-conductive one. The stacks being in different resistive states initially and subjected to electroforming or "antiforming" did not demonstrate significant differences in the values of switching currents and voltages during subsequent measurements. The results obtained can be applied in the development of the "forming-free" memristors, which are relevant for their CMOS integration. Keywords: memristor, resistive memory, resistive switching, filament, current-voltage curves, electroforming, yttria-stabilized zirconia, alumina.
- D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, X. Zhang. J. Semicond., 38 (7), 071002 (2017). DOI: 10.1088/1674-4926/38/7/071002
- A.N. Mikhailov, E.G. Gryaznov, V.I. Lukoyanov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov, O.A. Telminov, M.V. Ivanchenko, V.B. Kazantsev. Fizmat, 1 (1), 42 (2023) (in Russian). DOI: 10.56304/S2949609823010021
- F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday. Nanoscale Res. Lett., 15 (1), 90 (2020). DOI: 10.1186/s11671-020-03299-9
- J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
- D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang. Rep. Prog. Phys., 75 (7), 076502 (2012). DOI: 10.1088/0034-4885/75/7/076502
- X.-D. Huang, Y. Li, H.-Y. Li, K.-H. Xue, X. Wang, X.-S. Miao. IEEE Electron Device Lett., 41 (4), 549 (2020). DOI: 10.1109/LED.2020.2977397
- T.-L. Tsai, Y.-H. Lin, T.-Y. Tseng. IEEE Electron Device Lett., 36 (7), 675 (2015). DOI: 10.1109/LED.2015.2428719
- D. Ielmini. Semicond. Sci. Technol., 31 (6), 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
- H. Wu, X. Li, M. Wu, F. Huang, Z. Yu, H. Qian. IEEE Electron Device Lett., 35 (1), 39 (2014). DOI: 101109/LED.2013.2288311
- M. Trapatseli, S. Cortese, A. Serb, A. Khiat, T. Prodromakis. J. Appl. Phys., 121 (18), 184505 (2017). DOI: 10.1063/1.4983006
- L. Alekseeva, T. Nabatame, T. Chikyow, A. Petrov. Jpn. J. Appl. Phys., 55 (8S2), 08PB02 (2016). DOI: 10.7567/JJAP.55.08PB02
- U. Chand, C.-Y. Huang, T.-Y. Tseng. IEEE Electron Device Lett., 35 (10), 1019 (2014). DOI: 10.1109/LED.2014.2345782
- M. Ismail, H. Abbas, C. Choi, S. Kim. J. Alloys Compd., 835, 155256 (2020). DOI: 10.1016/j.jallcom.2020.155256
- O.N. Gorshkov, I.N. Antonov, A.I. Belov, A.P. Kasatkin, A.N. Mikhailov. Pis'ma v ZhTF, 40 (3), 12 (2014) (in Russian)
- L. Jiang, Y. Jin, Y. Zhao, J. Meng, J. Zhang, X. Chen, X. Wu, Y. Xiao, Z. Tao, B. Jiang, X. Wen, C. Ye. Adv. Phys. Res., 2 (5), 2200086 (2023). DOI: 10.1002/apxr.202200086
- X.A. Tran, H.Y. Yu, B. Gao, J.F. Kang, X.W. Sun, Y.-C. Yeo, B.Y. Nguyen, M.F. Li. IEEE Electron Dev. Lett., 32 (9), 1290 (2011). DOI: 10.1109/LED.2011.2161259
- C.-Y. Huang, J.-H. Jieng, W.-Y. Jang, C.-H. Lin, T.-Y. Tseng. ECS Solid State Lett., 2 (8), 63 (2013). DOI: 10.1149/2.006308ssl
- Z. Chen, F. Zhang, B. Chen, Y. Zheng, B. Gao, L. Liu, X. Liu, J. Kang. Nanoscale Res. Lett., 10 (1), 70 (2015). DOI: 10.1186/s11671-015-0738-1
- R. Han, P. Huang, Y. Zhao, Z. Chen, L. Liu, X. Liu, J. Kang. Nanoscale Res. Lett., 12 (1), 37 (2017). DOI: 10.1186/s11671-016-1807-9
- J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, H. Hwang. IEEE Electron Dev. Lett., 37 (8), 994 (2016). DOI: 10.1109/LED.2016.2582859
- M. Akbari, M.-K. Kim, D. Kima, J.-S. Lee. RSC Adv., 7 (27), 16704 (2017). DOI: 10.1039/C6RA26872B
- M.K. Mahadevaiah, E. Perez, M. Lisker, M.A. Schubert, E.P.B. Quesada, C. Wenger, A. Mai. Electronics, 11 (10), 1540 (2022). DOI: 10.3390/electronics11101540
- L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang. Solid State Ionics, 273, 66 (2015). DOI: 10.1016/j.ssi.2014.08.014
- K.-M. Persson, M.S. Ram, L.-E. Wernersson. IEEE J. Electron Dev. Society, 9, 564 (2021). DOI: 10.1109/JEDS.2021.3079398
- J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, S. Oda. J. Phys. D: Appl. Phys., 51 (2), 025102 (2017). DOI: 10.1088/1361-6463/aa9c15
- J. Robertson. The Europ. Phys. J. Appl. Phys., 28 (3), 265 (2004). DOI: 10.1051/epjap:2004206
- Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Ed. by D. Ielmini, R. Waser (Wiley-VCH Verlag GmbH \& Co. KGaA, Germany, 2016)
- Y. Guo, J. Robertson. Appl. Phys. Lett., 105 (22), 223516 (2014). DOI: 10.1063/1.4903470
- M. Gerasimova, A. Ivanov, D. Mazing, D. Chigirev, N. Andreeva. J. Phys.: Conf. Ser., 1697 (1), 012129 (2020). DOI: 10.1088/1742-6596/1697/1/012129
- A.N. Mikhaylov, M.N. Koryazhkina, D.S. Korolev, A.I. Belov, E.V. Okulich, V.I. Okulich, I.N. Antonov, R.A. Shuisky, D.V. Guseinov, K.V. Sidorenko, M.E. Shenina, E.G. Gryaznov, S.V. Tikhov, D.O. Filatov, D.A. Pavlov, D.I. Tetelbaum, O.N. Gorshkov, A.V. Emelyanov, K.E. Nikiruy, V.V. Rylkov, V.A. Demin, B. Spagnolo. In: Metal Oxides for Non-volatile Memory ed. by P. Dimitrakis, I. Valov, S. Tappertzhofen (Elsevier, 2022)
- H.A. Abbas. Stabilized Zirconia for Solid Oxide Fuel Cells or Oxygen Sensors: Characterization of Structural and Electrical Properties of Zirconia Doped with Some Oxides (LAP Lambert Academic, 2012)
- V.G. Zavodinsky. FTT, 46 (3), 441 (2004) (in Russian)
- S. Tikhov, O. Gorshkov, I. Antonov, A. Morozov, M. Koryazhkina, D. Filatov. Adv. Conden. Matter. Phys., 2018 (8), 2028491 (2018). DOI: 10.1155/2018/2028491
- A.V. Yakimov, D.O. Filatov, O.N. Gorshkov, D.A. Antonov, D.A. Liskin, I.N. Antonov, A.V. Belyakov, A.V. Klyuev, A. Carollo, B. Spagnolo. Appl. Phys. Lett., 114 (25), 253506 (2019). DOI: 10.1063/1.5098066
- A.V. Emelyanov, K.E. Nikiruy, V.A. Demin, V.V. Rylkov, A.I. Belov, D.S. Korolev, E.G. Gryaznov, D.A. Pavlov, O.N. Gorshkov, A.N. Mikhaylov, P. Dimitrakis. Microelectron. Engineer., 215, 110988 (2019). DOI: 10.1016/j.mee.2019.110988
- S.Yu. Zubkov, I.N. Antonov, O.N. Gorshkov, A.P. Kasatkin, R.N. Kryukov, D.E. Nikolichev, D.A. Pavlov, M.E. Shenina. FTT, 60 (3), 591 (2018) (in Russian). DOI: 10.21883/FTT.2018.03.45566.249
- F. Iacona, R. Kelly, G. Marletta. J. Vac. Sci. Technol. A, 17 (5), 2771 (1999). DOI: 10.1116/1.581943
- M.-S. Kim, Y.-D. Ko, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, I. Yun. Appl. Surf. Sci., 227 (1-4), 387 (2004). DOI: 10.1016/j.apsusc.2003.12.017
- O.N. Gorshkov, A.N. Mikhaylov, A.P. Kasatkin, S.V. Tikhov, D.O. Filatov, D.A. Pavlov, A.I. Belov, M.N. Koryazhkina, A.I. Bobrov, N.V. Malekhonova, E.G. Gryaznov, I.N. Antonov, M.E. Shenina. J. Phys.: Conf. Ser., 741 (1), 012174 (2016). DOI: 10.1088/1742-6596/741/1/012174
- A. Kindsmuller, A. Meledin, J. Mayer, R. Waser, D. Wouters. Nanoscale, 11 (39), 18201 (2019). DOI: 10.1039/c9nr06624a
- C.-Y. Lin, C. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T. Tseng. IEEE Electron Dev. Lett., 28 (5), 366 (2007). DOI: 10.1109/LED.2007.894652
- S. Chen, I. Valov. Adv. Mater., 34 (3), 2105022 (2022). DOI: 10.1002/adma.202105022
- J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, S. Oda. J. Phys. D: Appl. Phys., 51 (2), 025102 (2017). DOI: 10.1088/1361-6463/aa9c15
- S. Liu, Y. Sun, B. Song, Z. Li, H. Liu, Q. Li. Phys. Lett. A, 383 (30), 125877 (2019). DOI: 10.1016/j.physleta.2019.125877
- J.W. McPherson, J. Kim, A. Shanware, H. Mogul, J. Rodriguez. IEEE Transactions on Electron Dev., 50 (8), 1771 (2003). DOI: 10.1109/TED.2003.815141
- M. Lanza, K. Zhang, M. Porti, M. Nafria, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker. Appl. Phys. Lett., 100 (12), 123508 (2012). DOI: 10.1063/1.3697648
- M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafria, X. Aymerich. Appl. Phys. Lett., 101 (19), 193502 (2012). DOI: 10.1063/1.4765342
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.