Memristors for non-volatile resistive memory based on an Al2O3/ZrO2(Y) dielectric bilayer
Kruglov A. V. 1, Serov D. A. 1, Belov A. I. 1, Koryazhkina M. N.1, Antonov I. N. 1, Zubkov S. Yu. 1, Kriukov R.N. 1, Mikhailov A.N. 1, Filatov D.O. 1, Gorshkov O.N. 1
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: krualex@yandex.ru, serow.dim2015@yandex.ru, belov@nifti.unn.ru, mahavenok@mail.ru, ivant@nifti.unn.ru, zubkov@phys.unn.ru, kryukov@unn.ru, mian@nifti.unn.ru, dmitry_filatov@inbox.ru, gorshkov@nifti.unn.ru

PDF
In the present paper, memristors based on an Al2O3/ZrO2(Y) dielectric bilayer with an Al2O3 layer of 0, 3, 6 and 9 nm in thickness fabricated by magnetron sputtering, were investigated. The presence of the additional Al2O3 layer between the chemically active Ta electrode and the ZrO2(Y) functional dielectric allows localizing the sites of rupture and subsequent restore of the filaments during cyclic resistive switching and leads to an improvement in the stability of the resistive states of the memristor. The as fabricated memristor stacks with different thicknesses of the Al2O3 can be either in the conductive state or in the non-conductive one. The stacks being in different resistive states initially and subjected to electroforming or "antiforming" did not demonstrate significant differences in the values of switching currents and voltages during subsequent measurements. The results obtained can be applied in the development of the "forming-free" memristors, which are relevant for their CMOS integration. Keywords: memristor, resistive memory, resistive switching, filament, current-voltage curves, electroforming, yttria-stabilized zirconia, alumina.
  1. D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, X. Zhang. J. Semicond., 38 (7), 071002 (2017). DOI: 10.1088/1674-4926/38/7/071002
  2. A.N. Mikhailov, E.G. Gryaznov, V.I. Lukoyanov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov, O.A. Telminov, M.V. Ivanchenko, V.B. Kazantsev. Fizmat, 1 (1), 42 (2023) (in Russian). DOI: 10.56304/S2949609823010021
  3. F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday. Nanoscale Res. Lett., 15 (1), 90 (2020). DOI: 10.1186/s11671-020-03299-9
  4. J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
  5. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang. Rep. Prog. Phys., 75 (7), 076502 (2012). DOI: 10.1088/0034-4885/75/7/076502
  6. X.-D. Huang, Y. Li, H.-Y. Li, K.-H. Xue, X. Wang, X.-S. Miao. IEEE Electron Device Lett., 41 (4), 549 (2020). DOI: 10.1109/LED.2020.2977397
  7. T.-L. Tsai, Y.-H. Lin, T.-Y. Tseng. IEEE Electron Device Lett., 36 (7), 675 (2015). DOI: 10.1109/LED.2015.2428719
  8. D. Ielmini. Semicond. Sci. Technol., 31 (6), 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
  9. H. Wu, X. Li, M. Wu, F. Huang, Z. Yu, H. Qian. IEEE Electron Device Lett., 35 (1), 39 (2014). DOI: 101109/LED.2013.2288311
  10. M. Trapatseli, S. Cortese, A. Serb, A. Khiat, T. Prodromakis. J. Appl. Phys., 121 (18), 184505 (2017). DOI: 10.1063/1.4983006
  11. L. Alekseeva, T. Nabatame, T. Chikyow, A. Petrov. Jpn. J. Appl. Phys., 55 (8S2), 08PB02 (2016). DOI: 10.7567/JJAP.55.08PB02
  12. U. Chand, C.-Y. Huang, T.-Y. Tseng. IEEE Electron Device Lett., 35 (10), 1019 (2014). DOI: 10.1109/LED.2014.2345782
  13. M. Ismail, H. Abbas, C. Choi, S. Kim. J. Alloys Compd., 835, 155256 (2020). DOI: 10.1016/j.jallcom.2020.155256
  14. O.N. Gorshkov, I.N. Antonov, A.I. Belov, A.P. Kasatkin, A.N. Mikhailov. Pis'ma v ZhTF, 40 (3), 12 (2014) (in Russian)
  15. L. Jiang, Y. Jin, Y. Zhao, J. Meng, J. Zhang, X. Chen, X. Wu, Y. Xiao, Z. Tao, B. Jiang, X. Wen, C. Ye. Adv. Phys. Res., 2 (5), 2200086 (2023). DOI: 10.1002/apxr.202200086
  16. X.A. Tran, H.Y. Yu, B. Gao, J.F. Kang, X.W. Sun, Y.-C. Yeo, B.Y. Nguyen, M.F. Li. IEEE Electron Dev. Lett., 32 (9), 1290 (2011). DOI: 10.1109/LED.2011.2161259
  17. C.-Y. Huang, J.-H. Jieng, W.-Y. Jang, C.-H. Lin, T.-Y. Tseng. ECS Solid State Lett., 2 (8), 63 (2013). DOI: 10.1149/2.006308ssl
  18. Z. Chen, F. Zhang, B. Chen, Y. Zheng, B. Gao, L. Liu, X. Liu, J. Kang. Nanoscale Res. Lett., 10 (1), 70 (2015). DOI: 10.1186/s11671-015-0738-1
  19. R. Han, P. Huang, Y. Zhao, Z. Chen, L. Liu, X. Liu, J. Kang. Nanoscale Res. Lett., 12 (1), 37 (2017). DOI: 10.1186/s11671-016-1807-9
  20. J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, H. Hwang. IEEE Electron Dev. Lett., 37 (8), 994 (2016). DOI: 10.1109/LED.2016.2582859
  21. M. Akbari, M.-K. Kim, D. Kima, J.-S. Lee. RSC Adv., 7 (27), 16704 (2017). DOI: 10.1039/C6RA26872B
  22. M.K. Mahadevaiah, E. Perez, M. Lisker, M.A. Schubert, E.P.B. Quesada, C. Wenger, A. Mai. Electronics, 11 (10), 1540 (2022). DOI: 10.3390/electronics11101540
  23. L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang. Solid State Ionics, 273, 66 (2015). DOI: 10.1016/j.ssi.2014.08.014
  24. K.-M. Persson, M.S. Ram, L.-E. Wernersson. IEEE J. Electron Dev. Society, 9, 564 (2021). DOI: 10.1109/JEDS.2021.3079398
  25. J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, S. Oda. J. Phys. D: Appl. Phys., 51 (2), 025102 (2017). DOI: 10.1088/1361-6463/aa9c15
  26. J. Robertson. The Europ. Phys. J. Appl. Phys., 28 (3), 265 (2004). DOI: 10.1051/epjap:2004206
  27. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Ed. by D. Ielmini, R. Waser (Wiley-VCH Verlag GmbH \& Co. KGaA, Germany, 2016)
  28. Y. Guo, J. Robertson. Appl. Phys. Lett., 105 (22), 223516 (2014). DOI: 10.1063/1.4903470
  29. M. Gerasimova, A. Ivanov, D. Mazing, D. Chigirev, N. Andreeva. J. Phys.: Conf. Ser., 1697 (1), 012129 (2020). DOI: 10.1088/1742-6596/1697/1/012129
  30. A.N. Mikhaylov, M.N. Koryazhkina, D.S. Korolev, A.I. Belov, E.V. Okulich, V.I. Okulich, I.N. Antonov, R.A. Shuisky, D.V. Guseinov, K.V. Sidorenko, M.E. Shenina, E.G. Gryaznov, S.V. Tikhov, D.O. Filatov, D.A. Pavlov, D.I. Tetelbaum, O.N. Gorshkov, A.V. Emelyanov, K.E. Nikiruy, V.V. Rylkov, V.A. Demin, B. Spagnolo. In: Metal Oxides for Non-volatile Memory ed. by P. Dimitrakis, I. Valov, S. Tappertzhofen (Elsevier, 2022)
  31. H.A. Abbas. Stabilized Zirconia for Solid Oxide Fuel Cells or Oxygen Sensors: Characterization of Structural and Electrical Properties of Zirconia Doped with Some Oxides (LAP Lambert Academic, 2012)
  32. V.G. Zavodinsky. FTT, 46 (3), 441 (2004) (in Russian)
  33. S. Tikhov, O. Gorshkov, I. Antonov, A. Morozov, M. Koryazhkina, D. Filatov. Adv. Conden. Matter. Phys., 2018 (8), 2028491 (2018). DOI: 10.1155/2018/2028491
  34. A.V. Yakimov, D.O. Filatov, O.N. Gorshkov, D.A. Antonov, D.A. Liskin, I.N. Antonov, A.V. Belyakov, A.V. Klyuev, A. Carollo, B. Spagnolo. Appl. Phys. Lett., 114 (25), 253506 (2019). DOI: 10.1063/1.5098066
  35. A.V. Emelyanov, K.E. Nikiruy, V.A. Demin, V.V. Rylkov, A.I. Belov, D.S. Korolev, E.G. Gryaznov, D.A. Pavlov, O.N. Gorshkov, A.N. Mikhaylov, P. Dimitrakis. Microelectron. Engineer., 215, 110988 (2019). DOI: 10.1016/j.mee.2019.110988
  36. S.Yu. Zubkov, I.N. Antonov, O.N. Gorshkov, A.P. Kasatkin, R.N. Kryukov, D.E. Nikolichev, D.A. Pavlov, M.E. Shenina. FTT, 60 (3), 591 (2018) (in Russian). DOI: 10.21883/FTT.2018.03.45566.249
  37. F. Iacona, R. Kelly, G. Marletta. J. Vac. Sci. Technol. A, 17 (5), 2771 (1999). DOI: 10.1116/1.581943
  38. M.-S. Kim, Y.-D. Ko, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, I. Yun. Appl. Surf. Sci., 227 (1-4), 387 (2004). DOI: 10.1016/j.apsusc.2003.12.017
  39. O.N. Gorshkov, A.N. Mikhaylov, A.P. Kasatkin, S.V. Tikhov, D.O. Filatov, D.A. Pavlov, A.I. Belov, M.N. Koryazhkina, A.I. Bobrov, N.V. Malekhonova, E.G. Gryaznov, I.N. Antonov, M.E. Shenina. J. Phys.: Conf. Ser., 741 (1), 012174 (2016). DOI: 10.1088/1742-6596/741/1/012174
  40. A. Kindsmuller, A. Meledin, J. Mayer, R. Waser, D. Wouters. Nanoscale, 11 (39), 18201 (2019). DOI: 10.1039/c9nr06624a
  41. C.-Y. Lin, C. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T. Tseng. IEEE Electron Dev. Lett., 28 (5), 366 (2007). DOI: 10.1109/LED.2007.894652
  42. S. Chen, I. Valov. Adv. Mater., 34 (3), 2105022 (2022). DOI: 10.1002/adma.202105022
  43. J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, S. Oda. J. Phys. D: Appl. Phys., 51 (2), 025102 (2017). DOI: 10.1088/1361-6463/aa9c15
  44. S. Liu, Y. Sun, B. Song, Z. Li, H. Liu, Q. Li. Phys. Lett. A, 383 (30), 125877 (2019). DOI: 10.1016/j.physleta.2019.125877
  45. J.W. McPherson, J. Kim, A. Shanware, H. Mogul, J. Rodriguez. IEEE Transactions on Electron Dev., 50 (8), 1771 (2003). DOI: 10.1109/TED.2003.815141
  46. M. Lanza, K. Zhang, M. Porti, M. Nafria, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker. Appl. Phys. Lett., 100 (12), 123508 (2012). DOI: 10.1063/1.3697648
  47. M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafria, X. Aymerich. Appl. Phys. Lett., 101 (19), 193502 (2012). DOI: 10.1063/1.4765342

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru