Absorption spectrum of carbon nanocages
Tsiberkin K. B. 1, Sosunov A. V. 1, Tselikov G. I. 2
1Perm State University, Perm, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: kbtsiberkin@psu.ru, avsosunov@psu.ru

In the current research, hollow carbon nanocages are synthesized and characterized by electronic microscopy. It shown that the nanocages have 3-5 nm size and consist of few carbon layers with oxygen addition. The experimental and theoretical study of their absorption spectrum is provided. A simple model of electron energy spectrum is supposed. It is used for calculation of optical absorption spectrum. We have found that the theoretical results are in qualitative agreement with the experimental measurements in IR-band. Thus, the analysis of optical properties of nanocages is provided. They can be used as a pretty optical absorber in IR-band in integral photonics devices. Keywords: carbon nanospheres, absorption spectrum, energy spectrum, IR-spectroscopy.
  1. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee. Chem. Eng. J. 403, 126352 (2021). DOI: 10.1016/j.cej.2020.126352
  2. H. Wu, R. Tian, F. Huang, B. Wang, S. Wang, S. Li, F. Liu, H. Zhang. Carbon. 196, 552 (2022). DOI: 10.1016/j.carbon.2022.05.029
  3. A.M. Grumezescu. Fullerens, Graphenes and Nanotubes: a Pharmaceutical Approach (Elsevier, Amsterdam, 2018). DOI: 10.1016/C2016-0-04206-7
  4. M.F. Lin, K.W.K. Shung. Phys. Rev. B, 50 (23), 17744(R) (1994). DOI: 10.1103/PhysRevB.50.17744
  5. X. Wan, J. Dong, D.Y. Xing. Phys. Rev. B, 58 (11), 6756 (1998). DOI: 10.1103/PhysRevB.58.6756
  6. H. Sadeghi, D. Dorranian. J. Theor. Appl. Phys. 10, 7 (2016). DOI: 10.1007/s40094-015-0194-4
  7. K. Krishnamoorthy, R. Mohan, S.J. Kim. Appl. Phys. Lett. 98 (111), 244101 (2011). DOI: 10.1063/1.3599453
  8. J. Zhu, S. Yan, N. Feng N., L. Ye, J.-Y. Ou, Q.H. Liu. Appl. Phys. Lett. 112, 153106 (2018). DOI: 10.1063/1.5022768
  9. H. Kuzmany, R. Winkler, T. Pichler. J. Phys. Cond. Mat. 7 (33), 6601 (1995). DOI: 10.1088/0953-8984/7/33/003
  10. M. Liu. Nanoarchielectronics, 1, 1 (2020). DOI: 10.37256/nat.112020124.1-12
  11. T.V. Eryomin, V.A. Eryomina, E.D. Obraztsova, Opt. i spektr., 131 (1), 111 (2023) (in Russian). DOI: 10.21883/OS.2023.01.54547.4365-22
  12. A.V. Silant'ev. Opt. Spectrosc., 124 (2), 155 (2018). DOI: 10.1134/S0030400X18020157
  13. A.V. Silant'ev. Phys. Met. Metallogr., 118 (1), 1 (2017). DOI: 10.1134/S0031918X16100112
  14. G.A. Rudakov, A.V. Sosunov, R.S. Ponomarev, V.K. Khenner, M.S. Reza, G. Sumanasekera. Phys. Solid State 60 (1) 167 (2018). DOI: 10.1134/S1063783418010213
  15. K.B. Tsiberkin. J. Exp. Theor. Phys., 135 (6), 920 (2022). DOI: 10.1134/S1063776122120123

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru