Вышедшие номера
Особенности изготовления микрорезонаторов с модами типа шепчущей галереи из аморфных материалов
Российского фонда фундаментальных исследований (РФФИ), 20-32-90184
Тебенева Т.С.1, Шитиков А.Е.1, Бендеров О.В.2, Лобанов В.Е.1, Родин А.В.2, Биленко И.А.1,3
1Российский квантовый центр, Москва, Россия
2Московский физико-технический институт, Долгопрудный, Московская обл., Россия
3Московский государственный университет им. М.В. Ломоносова (физический факультет), Москва, Россия
Email: tetasia19@gmail.com
Поступила в редакцию: 16 февраля 2024 г.
В окончательной редакции: 21 марта 2024 г.
Принята к печати: 21 марта 2024 г.
Выставление онлайн: 31 мая 2024 г.

Описана методика изготовления высокодобротных микросферических резонаторов из сульфида мышьяка и фторидного стекла (ZBLAN) методом плавления оптических волокон, рассмотрены различные дефекты, возникающие в процессе изготовления, и предлагаются способы для их устранения. Показано, что разработанная методика позволяет достичь уровня добротности микрорезонаторов, ограниченного фундаментальными оптическими потерями в используемых материалах. Ключевые слова: микрорезонаторы с модами типа шепчущей галереи, изготовление, фторидное волокно, халькогенидное волокно, измерение добротности.
  1. V.B. Braginsky, M.L. Gorodetsky, V.S. Ilchenko. Phys. Lett. A, 137, 393--397 (1989). DOI: 10.1016/0375-9601(89)90912-2
  2. K.J. Vahala. Nature, 424, 839--846 (2003). DOI: 10.1038/nature01939
  3. V.S. Ilchenko, A.B. Matsko. IEEE J. Select. Topics Quantum Electron., 12, 15--32 (2006). DOI: 10.1109/JSTQE.2005.862943
  4. J. Zhu, S.K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. Nature Photonics, 4, 46--49 (2010). DOI: 10.1038/nphoton.2009.237
  5. J. Ward, O. Benson. Laser \& Photonics Reviews 5, 553--570 (2011). DOI: 10.1002/lpor.201000025
  6. F. Vollmer, S. Arnold. Nature Methods 5, 591--596 (2008). DOI: 10.1038/nmeth.1221
  7. F. Vollmer, H.G.L. Schwefel. Eur. Phys. J. Spec. Top. 223, 1907--1916 (2014). DOI: 10.1140/epjst/e2014-02271-2
  8. G. Lin, A. Coillet, Y.K. Chembo. Adv. Opt. Photon., AOP 9, 828--890 (2017). DOI: 10.1364/AOP.9.000828
  9. T. Kippenberg. Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities, Ph.D thesis, California Institute of Technology, 2004. URL: https://thesis.library.caltech.edu/2487/
  10. A. Pasquazi, M. Peccianti, L. Razzari, D.J. Moss, S. Coen, M. Erkintalo, Y.K. Chembo, T. Hansson, S. Wabnitz, P. Del'Haye, X. Xue, A.M. Weiner, R. Morandotti. Physics Reports 729, 1--81 (2018). DOI: 10.1016/j.physrep.2017.08.004
  11. Y. Deng, R.K. Jain, M. Hossein-Zadeh. Optics Lett., 39, 4458 (2014). DOI: 10.1364/OL.39.004458
  12. B. Behzadi, R.K. Jain, M. Hossein-Zadeh. Laser Physics Lett., 15, 085112 (2018). DOI: 10.1088/1612-202X/aac5c8
  13. L. He, S.K. Ozdemir, L. Yang, Laser \& Photonics Reviews 7, 60--82 (2013). DOI: 10.1002/lpor.201100032
  14. R.R. Galiev, N.G. Pavlov, N.M. Kondratiev, S. Koptyaev, V.E. Lobanov, A.S. Voloshin, A.S. Gorodnitskiy, M.L. Gorodetsky. Opt. Express, OE 26, 30509--30522 (2018). DOI: 10.1364/OE.26.030509
  15. W. Liang, V.S. Ilchenko, D. Eliyahu, A.A. Savchenkov, A.B. Matsko, D. Seidel, L. Maleki. Nature Communications 6, 7371 (2015). DOI: 10.1038/ncomms8371
  16. A.E. Shitikov, I.I. Lykov, O.V. Benderov, D.A. Chermoshentsev, I.K. Gorelov, A.N. Danilin, R.R. Galiev, N.M. Kondratiev, S.J. Cordette, A.V. Rodin, A.V. Masalov, V.E. Lobanov, I.A. Bilenko, Opt. Express, 31, 313--327 (2023). DOI: 10.1364/OE.478009
  17. S. Arnold, D. Keng, S.I. Shopova, S. Holler, W. Zurawsky, F. Vollmer. Opt. Express 17, 6230 (2009). DOI: 10.1364/OE.17.006230
  18. W. von Klitzing, R. Long, V.S. Ilchenko, J. Hare, V. Lef\`evre-Seguin. New J. Phys. 3, 14--14 (2001). DOI: 10.1088/1367-2630/3/1/314
  19. B. Behzadi, R.K. Jain, M. Hossein-Zadeh. IEEE J. Quantum Electron., 53, 1--9 (2017). DOI: 10.1109/JQE.2017.2771423
  20. S. Jiang, C. Guo, K. Che, Z. Luo, T. Du, H. Fu, H. Xu, Z. Cai. Photon. Res., 7, 566--572 (2019). DOI: 10.1364/PRJ.7.000566
  21. A.E. Shitikov, I.A. Bilenko, N.M. Kondratiev, V.E. Lobanov, A. Markosyan, M.L. Gorodetsky. Optica, 5, 1525--1528 (2018). DOI: 10.1364/OPTICA.5.001525
  22. R. Shankar, I. Bulu, M. Lonvcar. Applied Physics Lett. 102, 051108 (2013). DOI: 10.1063/1.4791558
  23. D. Ren, C. Dong, S.J. Addamane, D. Burghoff. Nature Communications 13, 5727 (2022). DOI: 10.1038/s41467-022-32706-1
  24. R. Armand, M. Perestjuk, A. Della Torre, M. Sinobad, A. Mitchell, A. Boes, J.-M. Hartmann, J.-M. Fedeli, V. Reboud, P. Brianceau, A. De Rossi, S. Combrie, C. Monat, C. Grillet. APL Photonics, 8, 071301 (2023). DOI: 10.1063/5.0149324
  25. T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S.Y. Set, M. Takenaka, H.K. Tsang, Z. Cheng, K. Goda. Opt. Lett., 43, 2885 (2018). DOI: 10.1364/OL.43.002885
  26. P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, G. Brambilla. Opt. Lett., 37, 728 (2012). DOI: 10.1364/OL.37.000728
  27. I.S. Grudinin, K. Mansour, N. Yu. Opt. Lett., 41, 2378 (2016). DOI: 10.1364/OL.41.002378
  28. W. Liang, A.B. Matsko, A.A. Savchenkov, V.S. Ilchenko, D. Seidel, L. Maleki, In: 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, p. 1--6. DOI: 10.1109/FCS.2011.5977304
  29. C. Lecaplain, C. Javerzac-Galy, M.L. Gorodetsky, T.J. Kippenberg. Nature Communications, 7, 13383 (2016). DOI: 10.1038/ncomms13383
  30. B. Way, R.K. Jain, M. Hossein-Zadeh. In: IEEE Photonics Conference 2012, p. 143--144
  31. R.K. Jain, B. Way, M. Klopfer, I. Small, M. Saad, M. Hossein-Zadeh. In: IEEE Photonics Conference 2012, p. 727--728
  32. F. Vanier, P. Bianucci, N. Godbout, M. Rochette, Y.-A. Peter. In: 2012 International Conference on Optical MEMS and Nanophotonics (2012), p. 45--46
  33. A.V. Andrianov, E.A. Anashkina. Opt. Express, OE 29, 5580--5587 (2021). DOI: 10.1364/OE.415787
  34. E.A. Anashkina, A.A. Sorokin, M.P. Marisova, A.V. Andrianov. J. Non-Crystalline Solids, 522, 119567 (2019). DOI: 10.1016/j.jnoncrysol.2019.119567
  35. F. Vanier. Nonlinear optics in chalcogenide and tellurite microspheres for the generation of mid-infrared frequencies, Ph.D. thesis, Ecole Polytechnique de Montreal, 2015. URL: https://publications.polymtl.ca/2021/
  36. V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki. Phys. Rev. Lett., 92, 043903 (2004). DOI: 10.1103/PhysRevLett.92.043903
  37. K.N. Minkov, A.N. Danilin, A.E. Shitikov, I.K. Gorelov, M.L. Galkin, A.V. Mantuzov, E.A. Artemov, M.I. Krasivskaya, V.E. Lobanov, I.A. Bilenko. J. Opt. Technol., 89, 691 (2022). DOI: 10.1364/JOT.89.000691
  38. K.N. Min'kov, G.V. Likhachev, N.G. Pavlov, A.N. Danilin, A.E. Shitikov, A.I. Yurin, E.A. Lonshakov, F.V. Bulygin, V.E. Lobanov, I.A. Bilenko. J. Opt. Technol., 88, 348 (2021). DOI: 10.1364/JOT.88.000348
  39. M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko. Optics Lett., 21, 453--455 (1996). DOI: 10.1364/OL.21.000453
  40. J.M. Ward, Y. Wu, K. Khalfi, S.N. Chormaic. Review of Scientific Instruments, 81, 073106 (2010). DOI: 10.1063/1.3455198
  41. G.R. Elliott, G.S. Murugan, J.S. Wilkinson, M.N. Zervas, D.W. Hewak. Opt. Express, OE 18, 26720--26727 (2010). DOI: 10.1364/OE.18.026720
  42. Y. Xie, D. Cai, J. Pan, N. Zhou, Y. Gao, Y. Jin, X. Jiang, J. Qiu, P. Wang, X. Guo, L. Tong. Small, 17, 2100140 (2021). DOI: 10.1002/smll.202100140
  43. D. O'Shea, C. Junge, S. Nickel, M. Pollinger, A. Rauschenbeutel. In: Laser Resonators and Beam Control XIII (International Society for Optics and Photonics, 2011), vol. 7913, p. 79130N
  44. G.S. Murugan, J.S. Wilkinson, M.N. Zervas. Opt. Express, OE 17, 11916--11925 (2009). DOI: 10.1364/OE.17.011916
  45. S.B. Papp, P. Del'Haye, S.A. Diddams. Phys. Rev. X, 3, 031003 (2013). DOI: 10.1103/PhysRevX.3.031003
  46. P. Del'Haye, S.A. Diddams, S.B. Papp. Appl. Phys. Lett., 102, 221119 (2013). DOI: 10.1063/1.4809781
  47. M. Sumetsky, J.M. Fini. Opt. Express, OE 19, 26470--26485 (2011). DOI: 10.1364/OE.19.026470
  48. M. Sumetsky. Progress in Quantum Electronics, 64, 1--30 (2019). DOI: 10.1016/j.pquantelec.2019.04.001
  49. N.A. Toropov, M. Sumetsky. Opt. Lett., 41, 2278 (2016). DOI: 10.1364/OL.41.002278
  50. M. Sumetsky, Y. Dulashko. Opt. Express, OE 20, 27896--27901 (2012). DOI: 10.1364/OE.20.027896
  51. F. Vanier, M. Rochette, N. Godbout, Y.-A. Peter. Opt. Lett., OL 38, 4966--4969 (2013). DOI: 10.1364/OL.38.004966
  52. F. Vanier, Y.-A. Peter, M. Rochette. Opt. Express, OE 22, 28731--28739 (2014). DOI: 10.1364/OE.22.028731
  53. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala. Nature, 421, 925--928 (2003). DOI: 10.1038/nature01371
  54. B. Way, R.K. Jain, M. Hossein-Zadeh. Opt. Lett., OL 37, 4389--4391 (2012). DOI: 10.1364/OL.37.004389
  55. P. Wang, G.S. Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrel. IEEE Photonics Technology Lett., 24, 1103--1105 (2012). DOI: 10.1109/LPT.2012.2195722
  56. M. Poulain, M. Poulain, J. Lucas. Materials Research Bulletin 10, 243--246 (1975). DOI: 10.1016/0025-5408(75)90106-3
  57. Л.В. Жукова, А.С. Корсаков, А.Е. Львов, Д.Д. Салимгареев. Волоконные световоды для среднего инфракрасного диапазона (Екатеринбург, УМЦ УПИ, 2016)
  58. B.J. Eggleton. Opt. Express, OE 18, 26632--26634 (2010). DOI: 10.1364/OE.18.026632
  59. L. Zhang, F. Gan, P. Wang. Appl. Opt., AO 33, 50--56 (1994). DOI: 10.1364/AO.33.000050
  60. Е.А. Анашкина. Дисперсионные и нелинейные свойства сферических микрорезонаторов на основе различных стекол (Нижний Новгород, Нижегородский госуниверситет, 2019)
  61. L. Wetenkamp, G.F. West, H. Tobben. J. Non-Crystalline Solids, 140, 35--40 (1992). DOI: 10.1016/S0022-3093(05)80737-9
  62. L.A. Harrington. Infrared Fibers and Their Applications (SPIE Press, 2004)
  63. T.-C. Ong, B. Fogarty, T. Steinberg, E. Jaatinen, J. Bell. International Journal of Applied Glass Science, 10, 391--400 (2019). DOI: 10.1111/ijag.13096

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.