Вышедшие номера
Метаповерхность из алюминиевых наноцилиндров для усиления хемилюминесценции люминола
Российский научный фонд, 23-72-00045
Дададжанов Д.Р.1, Палехова А.В.1, Вартанян T.A. 1
1Международный научно-образовательный центр физики наноструктур, Университет ИТМО, Санкт-Петербург, Россия
Email: Tigran.Vartanyan@mail.ru
Поступила в редакцию: 8 декабря 2023 г.
В окончательной редакции: 8 декабря 2023 г.
Принята к печати: 11 декабря 2023 г.
Выставление онлайн: 1 марта 2024 г.

В результате численного моделирования найдены параметры квадратной решетки алюминиевых наноцилиндров, обеспечивающей максимальное усиление хемилюминесценции люминола на длине волны 430 nm. Варьировались период решетки, образованной алюминиевыми наноцилиндрами, и радиус наноцилиндров при неизменной высоте, равной 20 nm. Усреднение фактора усиления произведено по накрывающему наноцилиндры слою водного раствора аналита и люминола. В то время как максимальный фактор усиления для молекул хемилюминофора, расположенных вблизи поверхности наноцилиндров, превышает тысячу, величина усиления, усредненная по слою реакционной смеси, в оптимальных условиях составила 3.2. Ключевые слова: плазмонный резонанс, алюминиевые наночастицы, хемилюминесценция, люминол, моделирование.
  1. I. Bronstein, C.E.M. Olesen. Molecular Methods for Virus Detection, ed. by D.L. Wiedbrauk, D.H. Farkas (Elsevier, 1995), p. 147-174. DOI: 10.1016/B978-012748920-9/50008-X
  2. L. Cinquanta, D.E. Fontana, N. Bizzaro. Autoim. Highlights, 8 (1), 9 (2017). DOI: 10.1007/s13317-017-0097-2
  3. B. Gomez-Taylor, M. Palomeque, J.V. Garci a Mateo, J. Marti nez Calatayud. J. Pharm. Biomed. Anal., 41 (2), 347-357 (2021). DOI: 10.1016/j.jpba.2005.11.040
  4. W. Yu, L. Zhao. TrAC Trends in Analytical Chemistry, 136, 116197 (2021). DOI: 10.1016/j.trac.2021.116197
  5. L. Liu, C. Dahlgren, H. Elwing, H. Lundqvist. J. Immunol. Methods, 192 (1-2), 173-178 (1996). DOI: 10.1016/0022-1759(96)00049-X
  6. D.R. Dadadzhanov, I.A. Gladskikh, M.A. Baranov, T. A. Vartanyan, A. Karabchevsky. Sens. and Act. B: Chem., 333, 129453 (2021). DOI: 10.1016/j.snb.2021.129453
  7. H. Chen, F. Gao, R. He, D. Cui. J. Coll. Interf. Sci., 315 (1), 158-163 (2007). DOI: 10.1016/j.jcis.2007.06.052
  8. A. Karabchevsky, A. Mosayyebi, A.V. Kavokin. Light: Sci. Appl., 5 (11), e16164-e16164 (2016). DOI: 10.1038/lsa.2016.164
  9. J. Wang, J. Du. Appl. Sci., 6 (9), 239 (2016). DOI: 10.3390/app6090239
  10. J. Hu, L. Chen, Z. Lian, M. Cao, H. Li, W. Sun, N. Tong, H. Zeng. J. Phys. Chem. C., 116 (29), 15584-15590 (2012). DOI: 10.1021/jp305844g
  11. P.B. Johnson, R.W. Christy. Phys. Rev. B., 6 (12), 4370-4379 (1972). DOI: 10.1103/PhysRevB.6.4370
  12. A.E. Krasnok, A. P. Slobozhanyuk, C.R. Simovski, S.A. Tretyakov, A.N. Poddubny, A.E. Miroshnichenko, Yu.S. Kivshar, P.A. Belov. Sci. Rep., 5, 12956 (2015). DOI: 10.1038/srep12956
  13. D.A. Gorbenkoa, P.V. Filatova, D.R. Dadadzhanov, K.K. Kirichek, M.Yu. Berezovskaya, T.A. Vartanyan. Proc. SPIE, 12663, 1266307 (2023). DOI: 10.1117/12.2676447
  14. K. Aslan, C.D. Geddes. Chem. Soc. Rev., 38, 2556 (2009). DOI: 10.1039/B807498B

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.