Вышедшие номера
Температурная зависимость кинетики затухания флуоресценции производных тиофлавина T в глицерине
Министерство образования Республики Беларусь, Конвергенция-2020, проект 3.04
Министерство образования Республики Беларусь, Конвергенция-2025, проект 3.01.3.3
Степуро В.И.1
1Гродненский государственный университет им. Янки Купалы, Гродно, Беларусь
Email: stsiapura@gmail.com
Поступила в редакцию: 22 декабря 2021 г.
В окончательной редакции: 7 февраля 2022 г.
Принята к печати: 15 февраля 2022 г.
Выставление онлайн: 7 апреля 2022 г.

Рассмотрена возможность применения флуоресцентных молекулярных роторов на основе тиофлавина Т в качестве сенсоров температуры. Флуоресцентные свойства растворов тиофлавина Т и его производного 6-Me-BTA-2C в 99%-глицерине исследовались методами стационарной и кинетической флуориметрии. Для тиофлавина Т в глицерине было обнаружено, что рост температуры от 261 до 353 K приводит к увеличению константы скорости knr безызлучательной дезактивации возбужденного состояния молекулы на ~3 порядка величины. Исследования кинетики затухания флуоресценции методом время-коррелированного счета одиночных фотонов показали, что температурные измерения на основе кинетики флуоресценции тиофлавина Т возможны для интервала температур 260-290 K. Для 6-Me-BTA-2C область максимальной чувствительности сдвинута в сторону более высоких температур (280-320 K). Полученные данные о флуоресцентных свойствах и кинетике дезактивации возбужденного состояния красителей на основе тиофлавина Т в средах с высокой вязкостью могут использоваться для разработки наноразмерных температурных сенсоров. Ключевые слова: температурный сенсор, флуоресцентный молекулярный ротор, нанотермометрия, тиофлавин Т, TICT.
  1. J. Zhou, B. del Rosal, D. Jaque, S. Uchiyama, D. Jin. Nature Methods, 17 (10), 967 (2020). DOI: 10.1038/s41592-020-0957-y
  2. D. Jaque, F. Vetrone. Nanoscale, 4 (15), 4301 (2012). DOI: 10.1039/C2NR30764B
  3. B. del Rosal, E. Ximendes, U. Rocha, D. Jaque. Advanced Optical Materials, 5 (1), 1600508 (2017). DOI: 10.1002/adom.201600508
  4. K. Grattan, A. Palmer. Review of Scientific Instruments, 56 (9), 1784 (1985). DOI: 10.1063/1.1138094
  5. S. Collins, G. Baxter, S. Wade, T. Sun, K. Grattan, Z. Zhang, A. Palmer. J. Appl. Phys., 84 (9), 4649 (1998). DOI: 10.1063/1.368705
  6. J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, G. Yang. Angewandte Chemie International Edition, 50 (35), 8072 (2011). DOI: 10.1002/ange.201102390
  7. X. Liu, S. Li, J. Feng, Y. Li, G. Yang. Chem. Commun., 50 (21), 2778 (2014). DOI: 10.1039/C3CC49147A
  8. A. Bednarkiewicz, L. Marciniak, L.D. Carlos, D. Jaque. Nanoscale, 12 (27), 14405 (2020). DOI: 10.1039/D0NR03568H
  9. Б.М. Ужинов, В.Л. Иванов, М.Я. Мельников. Успехи химии, 80 (12), 1231 (2011)
  10. M.A. Haidekker, E.A. Theodorakis. Org. Biomol. Chem., 5 (11), 1669 (2007). DOI: 10.1039/b618415d
  11. M.A. Haidekker, E.A. Theodorakis. J. Biological Engineering, 4 (1), 11 (2010). DOI: 10.1186/1754-1611-4-11
  12. E. Voropai, M. Samtsov, K. Kaplevskii, A. Maskevich, V. Stepuro, O. Povarova, I. Kuznetsova, K. Turoverov, A. Fink, V. Uverskii. J. Appl. Spectrosc., 70 (6), 868 (2003). DOI: 10.1023/B:JAPS.0000016303.37573.7e
  13. V.I. Stsiapura, A.A. Maskevich, V.A. Kuzmitsky, V.N. Uversky, I.M. Kuznetsova, K.K. Turoverov. J. Phys. Chem. B, 112 (49), 15893 (2008). DOI: 10.1021/jp805822c
  14. V.I. Stsiapura, S.A. Kurhuzenkau, V.A. Kuzmitsky, O.V. Bouganov, S.A. Tikhomirov. J. Phys. Chem. A, 120 (28), 5481 (2016). DOI: 10.1021/acs.jpca.6b02577
  15. M.J. van der Meer, H. Zhang, M. Glasbeek. J. Chem. Phys., 112 (6), 2878 (2000). DOI: 10.1063/1.480929
  16. M. Glasbeek, H. Zhang, P. Changenet, P. Plaza, M.M. Martin, W. Rettig. Femtochemistry: With the Nobel Lecture of A Zewail, 417 (2001). DOI: 10.1002/3527600183.ch26
  17. Y. Erez, N. Amdursky, R. Gepshtein, D. Huppert. J. Phys. Chem. A, 116 (49), 12056 (2012). DOI: 10.1021/jp309471w
  18. D. Ben-Amotz, C. Harris. J. Chem. Phys., 86 (9), 4856 (1987). DOI: 10.1063/1.452656
  19. A. Mokhtari, L. Fini, J. Chesnoy. J. Chem. Phys., 87 (6), 3429 (1987). DOI: 10.1063/1.452987
  20. R.O. Loutfy, B.A. Arnold. J. Phys. Chem., 86 (21), 4205 (1982). DOI: 10.1021/j100218a023
  21. R.O. Loutfy, K.Y. Law. J. Phys. Chem., 84 (21), 2803 (1980). DOI: 10.1021/j100458a027
  22. T.T. Vu, R. Meallet-Renault, G. Clavier, B.A. Trofimov, M.K. Kuimova. J. Mater. Chem. C, 4 (14), 2828 (2016). DOI: 10.1039/C5TC02954F
  23. E. Bahaidarah, A. Harriman, P. Stachelek, S. Rihn, E. Heyer, R. Ziessel. Photochemical \& Photobiological Sciences, 13 (10), 1397 (2014). DOI: 10.1039/C4PP00204K
  24. A. Vyv sniauskas, I. Lopez-Duarte, N. Duchemin, T.-T. Vu, Y. Wu, E.M. Budynina, Y.A. Volkova, E.P. Cabrera, D.E. Rami rez-Ornelas, M.K. Kuimova. Phys. Chem. Chem. Phys., 19 (37), 25252 (2017). DOI: 10.1039/C7CP03571C
  25. A. Vyv sniauskas, D. Ding, M. Qurashi, I. Boczarow, M. Balaz, H.L. Anderson, M.K. Kuimova. Chemistry-A European J., 23 (46), 11001 (2017). DOI: 10.1002/chem.201700740
  26. Y.-J. Jin, R. Dogra, I.W. Cheong, G. Kwak. ACS Аppl. Мater. \& Interfaces, 7 (26), 14485 (2015). DOI: 10.1021/acsami.5b03842
  27. A.A. Maskevich, V.I. Stsiapura, V.A. Kuzmitsky, I.M. Kuznetsova, O.I. Povarova, V.N. Uversky, K.K. Turoverov. J. Proteome Research, 6 (4), 1392 (2007). DOI: 10.1021/pr0605567
  28. N. Amdursky, Y. Erez, D. Huppert. Accounts of Chemical Research, 45 (9), 1548 (2012). DOI: 10.1021/ar300053p
  29. V.I. Stsiapura, A.A. Maskevich, V.A. Kuzmitsky, K.K. Turoverov, I.M. Kuznetsova. J. Phys. Chem. A, 111 (22), 4829 (2007). DOI: 10.1021/jp070590o
  30. V.I. Stsiapura. J. Computational Chem., 41 (21), 1874 (2020). DOI: 10.1002/jcc.26358
  31. V.I. Stsiapura, A.A. Maskevich, S.A. Tikhomirov, O.V. Buganov. J. Phys. Chem. A, 114 (32), 8345 (2010). DOI: 10.1021/jp105186z
  32. A.T.R. Williams, S.A. Winfield, J.N. Miller. Analyst, 108 (1290), 1067 (1983). DOI: 10.1039/AN9830801067
  33. C. Yaws. Chemical Properties Handbook. (McGraw-Hill Education, 1999)
  34. J.A. Trejo Gonzaalez, M.P. Longinotti, H.R. Corti. J. Chemical \& Engineering Data, 56 (4), 1397 (2011). DOI: 10.1021/je101164q
  35. А. Маскевич, В. Степуро, С. Кургузенков, А. Лавыш. Веснiк Гродзенскага дзяржаунага унiверсiтэта iмя Янкi Купалы Серыя 2 Матэматыка Фiзiка Iнфарматыка, вылiчальная тэхнiка i кiраванне, 3 (159), 107 (2013)
  36. D.V. O'Connor, D. Phillips. Time-correlated Single Photon Counting. (Academic Press, New York., 1984)
  37. В. Степуро. Веснiк Гродзенскага дзяржаунага унiверсiтэта iмя Янкi Купалы Серыя 2, 5 (1), 52 (2001)
  38. R. Lampert, S. Meech, J. Metcalfe, D. Phillips, A. Schaap. Chem. Phys. Lett., 94 (2), 137 (1983). DOI: 10.1016/0009-2614(83)87560-5
  39. D. Toptygin. J. Fluorescence, 13 (3), 201 (2003). DOI: 10.1023/A:1025033731377
  40. H. El-Kashef. Physica B: Condensed Matter, 311 (3--4), 376 (2002). DOI: 10.1016/S0921-4526(01)00642-1
  41. A. Chakraborty, D. Seth, P. Setua, N. Sarkar. J. Phys. Chem. B, 110 (11), 5359 (2006). DOI: 10.1021/jp056650c
  42. S.D. Gogoleva, E.V. Kalganova, A.A. Maskevich, A.A. Lugovski, V.A. Kuzmitsky, M. Goswami, O.V. Buganov, S.A. Tikhomirov, V.I. Stsiapura. J. Photochemistry and Photobiology A: Chemistry, 358, 76 (2018). DOI: https://doi.org/10.1016/j.jphotochem.2018.03.003

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.