Microwave methods as a means to estimate the uniformity of the magnetic parameters of multilayer structured elements
Vazhenina I.G. 1, Iskhakov R.S. 1, Svalov A.V. 2, Melnikov G.Yu. 2, Kurlyandskaya G.V. 2
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2 Institute of Natural Sciences and Mathematics of the Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: irina-vazhenina@mail.ru, rauf@iph.krasn.ru, andrey.svalov@urfu.ru, grigory.melnikov@urfu.ru, galinakurlyandskaya@urfu.ru

PDF
The possibility of microwave methods (ferromagnetic and spin-wave resonance) for characterize of multilayer planar elements having modulation of both structural and magnetic parameters of the systems is demonstrated. The measurements carried out in out-of-plane orientation allowed us to detect the range of orientation angle of the applied magnetic field, within which the system can be considered as an effective medium with a small dispersion of average dimensions. Also the analysis of the angle dependences allowed us to estimate a number of the fundamental magnetic parameters: effective magnetization, exchange interaction constant, surface anisotropy constant, the field of perpendicular magnetic anisotropy. Keywords: ferromagnetic and spin-wave resonance, multilayer two-dimesional elements, magnetic anisotropy, weak magnetic field sensors.
  1. V.V. Ustinov, M.A. Milayev, L.N. Romashev, T.P. Krinitsina, A.M. Burkhanov, V.V. Lauter-Pasyuk, H.J. Lauter. J. Magn. Magn. Mater., 300, e281 (2006). DOI: 10.1016/j.jmmm.2005.10.100
  2. F.J.A. den Broeder, W. Hoving, P.J.H. Bloemen. J. Magn. Magn. Mater., 93, 562 (1991). DOI: 10.1016/0304-8853(91)90404-X
  3. M.A. Andreeva, R.A. Baulin, A.I. Chumakov, R. Ruffer, G.V. Smirnov, Y.A. Babanov, D.I. Devyaterikov, B.Y. Goloborodsky, D.A. Ponomarev, L.N. Romashev, V.V. Ustinov. J. Magn. Magn. Mater., 440, 225 (2017). DOI: 10.1016/j.jmmm.2016.12.097
  4. P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers. Phys. Rev. Lett., 57, 2442 (1986). DOI: 10.1103/PhysRevLett.57.2442
  5. S.S.P. Parkin, R.F.C. Farrow, R.F. Marks, A. Cebollada, G.R. Harp, R.J. Savoy. Phys. Rev. Lett., 72, 3718 (1994). DOI: 10.1103/PhysRevLett.72.3718
  6. B. Heinrich, J.F. Cochran, M. Kowalewski, J. Kirschner, Z. Celinski, A.S. Arrott, K. Myrtle. Phys. Rev. B, 44, 9348 (1991). DOI: 10.1103/PhysRevB.44.9348
  7. V.A. Seredkin, G.I. Frolov, V.Yu. Yakovchuk. Pis'ma v ZhTF, 9 (23), 1446 (1983) (in Russian)
  8. M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas. Phys. Rev. Lett., 61, 2472 (1988). DOI: 10.1103/PhysRevLett.61.2472
  9. L. Tsetseris, B. Lee, Y.-C. Chang. Phys. Rev. B, 55, 11586 (1997). DOI: 10.1103/PhysRevB.55.11586
  10. S. Kim, S.R. Lee, J.D. Chung. J. Appl. Phys., 73, 6344 (1993). DOI: 10.1063/1.352643
  11. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn. Phys. Rev. B, 39, 4828 (1989). DOI: 10.1103/PhysRevB.39.4828
  12. K. Agra, T.J.A. Mori, L.S. Dorneles, V.M. Escobar, U.C. Silva, C. Chesman, F. Bohn, M.A. Corr\^ea. J. Magn. Magn. Mater., 355, 136 (2014). DOI: 10.1016/j.jmmm.2013.12.009
  13. L. Dreher, C. Bihler, E. Peiner, A. Waag, W. Schoch, W. Limmer, S.T.B. Goennenwein, M.S. Brandt. Phys. Rev. B, 87, 224422 (2013). DOI: 10.1103/PhysRevB.87.224422
  14. A. Layadi. Phys. Rev. B, 66, 184423 (2002). DOI: 10.1103/PhysRevB.66.184423
  15. J. Smit, H.G. Beljers. Philips Res. Repts, 10, 113 (1955)
  16. J.O. Artman. Phys. Rev., 105, 74 (1957). DOI: 10.1103/PhysRev.105.74
  17. Z. Zhang, L. Zhou, P.E. Wigen, K. Ounadjela. Phys. Rev. B, 50, 6094 (1994). DOI: 10.1103/PhysRevB.50.6094
  18. Yu.A. Korchagin, R.G. Khlebopros, N.S. Chistyakov. FTT, 14 (7), 2121 (1972) (in Russian)
  19. Yu.A. Korchagin, R.G. Khlebopros, N.S. Chistyakov. FMM, 34 (6) 1303 (1972) (in Russian)
  20. V.A. Ignatchenko, Y.I. Mankov, A.A. Maradudin. Phys. Rev. B, 62, 2181 (2000). DOI: 10.1103/PhysRevB.62.2181
  21. V.A. Ignatchenko, D.S. Tsikalov. J. Magn. Magn. Mater., 510, 166643 (2020). DOI: 10.1016/j.jmmm.2020.166643
  22. V.V. Kruglyak, A.N. Kuchko. Phys. B Condens. Matter., 339, 130 (2003). DOI: 10.1016/j.physb.2003.08.124
  23. V.D. Poimanov, A.N. Kuchko, V.V. Kruglyak. Phys. Rev. B, 98, 104418 (2018). DOI: 10.1103/PhysRevB.98.104418
  24. V.D. Poimanov, A.N. Kuchko, V.V. Kruglyak. Phys. Rev. B, 102, 104414 (2020). DOI: 10.1103/PhysRevB.102.104414
  25. R.P. van Stapele, F.J.A.M. Greidanus, J.W. Smits. J. Appl. Phys., 57, 1282 (1985). DOI: 10.1063/1.334527
  26. R. Kordecki, R. Meckenstock, J. Pelzl, H. Muhlbauer, G. Dumpich, S. Nikitov. J. Appl. Phys., 70, 6418 (1991). DOI: 10.1063/1.349915
  27. R. Kordecki, R. Meckenstock, J. Pelzl, S. Nikitov, J.C. Lodder. J. Magn. Magn. Mater., 121, 524 (1993). DOI: 10.1016/0304-8853(93)91260-E
  28. R.S. Iskhakov, S.V. Stolyar, L.A. Chekanova, M.V. Chizhik FTT, 54 (4), 704 (2012) (in Russian)
  29. S.V. Stolyar, D.A. Balaev, V.P. Ladygina, A.I. Pankratz, R.N. Yaroslavtsev, D.A. Velikanov, R.S. Iskhakov. Pis'ma v ZhTF 111 (3-4), 197 (2020). DOI: 10.31857/S0370274X2003011X
  30. S.V. Komogortsev, I.G. Vazhenina, S.A. Kleshnina, R.S. Iskhakov, V.N. Lepalovskij, A.A. Pasynkova, A.V. Svalov. Sensors, 22, 3324 (2022). DOI: 10.3390/s22093324
  31. B. Khodadadi, J.B. Mohammadi, J.M. Jones, A. Srivastava, C. Mewes, T. Mewes, C. Kaiser. Phys. Rev. Appl., 8, 014024 (2017). DOI: 10.1103/PhysRevApplied.8.014024
  32. A.V. Svalov, I.R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J.M. Barandiaran, J. Alonso, M.L. FernAndez-Gubieda, G.V. Kurlyandskaya. IEEE Trans. Magn., 46, 333 (2010). DOI: 10.1109/TMAG.2009.2032519
  33. H. Suhl. Phys. Rev., 97, 555 (1955). DOI: 10.1103/PhysRev.97.555.2
  34. G.Y. Melnikov, I.G. Vazhenina, R.S. Iskhakov, N.M. Boev, S.V. Komogortsev, A.V. Svalov, G.V. Kurlyandskaya. Sensors, 23, 6165 (2023). DOI: 10.3390/s23136165
  35. V.F. Meshcheryakov. Pisma v ZhETF, 76 (12), 836 (2002) (in Russian)
  36. S.V. Komogortsev, I.G. Vazhenina, A. A. Matsynin, D.A. Velikanov, V.A. Felk, M.V. Dorokhin, A.V. Zdoroveishchev, D.A. Zdoroveishchev, I.L. Kalentyeva. FTT, 66 (8), 1272 (2024). (in Russian) DOI: 10.61011/FTT.2024.08.58587.28HH
  37. I.G. Vazhenina, R.S. Iskhakov, V.Yu. Yakovchuk. FMM, 123 (11) 1153 (2022) (in Russian). DOI: 10.31857/S0015323022601192
  38. C. Kittel. Phys. Rev., 110, 1295 (1958). DOI: 10.1103/PhysRev.110.1295
  39. I.G. Vazhenina, R.S. Iskhakov, M.A. Milyaev, L.I. Naumova, M.V. Rautsky. Pis'ma v ZhTF, 46 (21), 28 (2020) (in Russian). DOI: 10.21883/PJTF.2020.21.50193.18433
  40. R.S. Iskhakov, Zh.M. Moroz, L.A. Chekanova, E.E. Shalygina, N.A. Shepeta. FTT, 45 (5), 846 (2003) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru